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Algebraic statistics is a young area of mathematics. It
started in 1894 with Pearson’s investigation of the crabs
in the bay of Naples. Pearson was interested to decide, af-
ter measuring body characteristics, if there are two dis-
tinct populations of crabs, or just one. He assumed a nor-
mal distribution of the ratios of head width to body length
with fixed mean and variance inside one population. His
goal was to determine whether the data was coming from
a mixture of two normal distributions with two distinct
means, or just one normal distribution. To do so, he com-
puted the first few moments (equivalent to mean, variance,
skewness, . . . ) of a mixture of two normal distributions.

For example, if µ is the mean of one population and ν the mean of another, and
they are mixed with a mixing parameter λ ∈ [0,1], then the mixture’s first mo-
ment is λµ + (1 − λ)ν. The second moment is λ(µ2 + σ 2) + (1 − λ)(ν2 + τ 2)

where now σ 2 and τ 2 are the variances of the two distributions. Conveniently for
the algebraist, the k-th moment of the mixture is a polynomial of total degree
k + 1 in λ, µ, ν, σ , and τ . Since there are only five parameters, eventually these
formulas must show some algebraic dependence. As it turns out, the sixth mo-
ment can be computed from the first five. Deriving and solving a univariate poly-
nomial of degree nine, Pearson could work out the product of the means. Amaz-
ingly he found this polynomial by hand and computed its real roots. This allowed
him to work backwards and identify the five unknowns λ, µ, ν, σ , τ . Today we
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Maximum Likelihood

A discrete statistical model is a subset M of the simplex ∆n.

The points p in ∆n are probability distributions on the state space
{0, 1, . . . , n}. Coordinates pi are positive and p0+p1+ · · ·+pn = 1.

Our data is an empirical distribution u ∈ ∆n. Here ui
is the fraction of samples observed to be in state i .

The maximum likelihood estimator (MLE) of M is the function

Φ : ∆n →M, u 7→ p̂,

where p̂ ∈M is the maximizer of the log-likelihood function

p 7→
n∑

i=0

ui · log(pi ).

Key Point: If M is a variety then Φ is an algebraic function.
The algebraic degree of Φ is the maximum likelihood degree of M.
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Fig. 3.2. The geometry of maximum likelihood estimation.

problem of maximizing the log-likelihood function

ℓu(θ) =
m∑

i=1

ui · log(fi(θ)). (3.19)

The geometry of maximum likelihood estimation is illustrated in Figure 3.2.

The polynomial map f maps the low-dimensional parameter space into a very

high-dimensional probability simplex. The image is the statistical model. The

empirical distribution derived from the data vector u is a point in the proba-

bility simplex, and its maximum likelihood estimate p̂ is a point in the model.

If these two points are close to each other then the model is a good fit for

the data. Assuming that the model is identifiable (i.e., the map f is locally

one-to-one), we can compute the unique parameter vector θ̂ which maps to p̂.

Every local and global maximum θ̂ in Θ of the log-likelihood function (3.19)

is a solution of the critical equations

∂ℓu
∂θ1

=
∂ℓu
∂θ2

= · · · =
∂ℓu
∂θd

= 0. (3.20)

The derivative of ℓu(θ) with respect to the unknown θi is the rational function

∂ℓu
∂θi

=
u1

f1(θ)

∂f1

∂θi
+

u2

f2(θ)

∂f2

∂θi
+ · · · +

um

fm(θ)

∂fm

∂θi
. (3.21)

The problem to be studied in this section is computing all solutions θ ∈ Cd

of the critical equations (3.20). Since (3.21) is a rational function, this set of

critical points is an algebraic variety outside the locus where the denominators

of these rational functions are zero. Hence the closure of the set of critical

points of ℓu is an algebraic variety in Cd, called the likelihood variety of the

model f with respect to the data u.

In order to compute the likelihood variety we proceed as follows. We in-

troduce m new unknowns z1, . . . , zm where zi represents the inverse of fi(θ).

The polynomial ring Q[θ, z] = Q[θ1, . . . , θd, z1, . . . , zm] is our “big ring”, as
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Let n = 3 and consider two binary random variables. The
independence model M is a surface in the tetrahedron ∆3.

Points in the model are positive rank one 2× 2 matrices

[
p0 p1

p2 p3

]
whose

entries sum to one. Data is a 2× 2 integer matrix u.

The sample
size is |u| = u0+u1+u2+u3. The empirical distribution is 1

|u|u.

The ML degree is 1 because the MLE is a rational function:

p̂0 = |u|−2(u0+u1)(u0+u2), p̂1 = |u|−2(u0+u1)(u1+u3),
p̂2 = |u|−2(u2+u3)(u0+u2), p̂3 = |u|−2(u2+u3)(u1+u3).
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Probability Tree

2 How to be Rational

Let M be a discrete statistical model in the open simplex �n that has a well-defined maxi-
mum likelihood estimator � : �n !M. We also write � : Rn+1

>0 !M for the induced map
u 7! �(u/|u|) on all positive vectors. If the n + 1 coordinates of � are rational functions in
u, then we say that M has rational MLE. The following is our main result in this paper.

Theorem 1. The following are equivalent for a discrete statistical model M with MLE �:

(1) The model M has rational MLE.

(2) There exists a Horn pair (H, �) such that M is the image of the Horn map '(H,�).

(3) There exists a discriminantal triple (A,�,m) such that M is the image under the
monomial map �(�,m) of precisely one orthant (9) of the dual toric variety Y ⇤

A.

The MLE of the model satisfies the following relation on the open orthant Rn+1
>0 :

� = '(H,�) = �(�,m) �H. (1)

The goal of this section is to define all the terms seen in parts (2) and (3) of this theorem.

Example 2. We first discuss Theorem 1 for a very simple experiment: Flip a biased coin. If
it shows heads, flip it again. This is a statistical model with n = 2 given by the tree diagram

s0

s1

s0

s1

p0

p1

p2.

The model M is a curve in the probability triangle �2. The tree shows its parametrization

�1 ! �2 , (s0, s1) 7! (s2
0, s0s1, s1) where s0, s1 > 0 and s0 + s1 = 1.

The implicit representation of the curve M is the quadratic equation p0p2� (p0 + p1)p1 = 0.
Let (u0, u1, u2) be the counts from repeated experiments. A total of 2u0 + 2u1 + u2 coin

tosses were made. We estimate the parameters as the empirical frequency of heads resp. tails:

ŝ0 =
2u0 + u1

2u0 + 2u1 + u2

and ŝ1 =
u1 + u2

2u0 + 2u1 + u2

.

The MLE is the retraction from the triangle �2 to the curve M given by the rational formula

�(u0, u1, u2) = (ŝ2
0, ŝ0ŝ1, ŝ1) =

✓
(2u0 + u1)

2

(2u0+2u1+u2)2
,

(2u0+u1)(u1+u2)

(2u0 + 2u1 + u2)2
,

u1 + u2

2u0+2u1+u2

◆
.

3

Experiment: Flip a biased coin. If it shows heads, flip it again.
The model M also has ML degree 1. It is the parametric curve

∆1 → ∆2 , (s0, s1) 7→ (s2
0 , s0s1, s1) where s0, s1 > 0 and s0 + s1 = 1.

Implicit representation:

M =
{

(p0, p1, p2) ∈ ∆2 : p0p2 = (p0 + p1)p1

}
.

Perform experiments and record outcomes in the data vector (u0, u1, u2) .

Estimated parameters are empirical frequency of heads and tails:

ŝ0 =
2u0 + u1

2u0 + 2u1 + u2
and ŝ1 =

u1 + u2

2u0 + 2u1 + u2
.

MLE is given by alternating products of positive linear forms:

(p̂0, p̂1, p̂2) =

(
(2u0 + u1)2

(2u0+2u1+u2)2
,

(2u0+u1)(u1+u2)

(2u0 + 2u1 + u2)2
,

u1 + u2

2u0+2u1+u2

)
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✓
(2u0 + u1)

2

(2u0+2u1+u2)2
,

(2u0+u1)(u1+u2)

(2u0 + 2u1 + u2)2
,

u1 + u2

2u0+2u1+u2

◆
.

3

Experiment: Flip a biased coin. If it shows heads, flip it again.
The model M also has ML degree 1. It is the parametric curve

∆1 → ∆2 , (s0, s1) 7→ (s2
0 , s0s1, s1) where s0, s1 > 0 and s0 + s1 = 1.

Implicit representation:

M =
{

(p0, p1, p2) ∈ ∆2 : p0p2 = (p0 + p1)p1

}
.

Perform experiments and record outcomes in the data vector (u0, u1, u2) .
Estimated parameters are empirical frequency of heads and tails:
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How to be Rational?
Analogy: Let M⊂ Rn and Φ : Rn →M its Euclidean nearest point
map. Then Φ is a rational function if and only if M is a linear space.

Question: For statistical models M⊂ ∆n, role of Φ is played by MLE.

Which M play the role of linear spaces? Which M have ML degree 1?

10.06.19, 21)15Information Theory of Cognitive Systems Group
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problem of maximizing the log-likelihood function

ℓu(θ) =
m∑

i=1

ui · log(fi(θ)). (3.19)

The geometry of maximum likelihood estimation is illustrated in Figure 3.2.

The polynomial map f maps the low-dimensional parameter space into a very

high-dimensional probability simplex. The image is the statistical model. The

empirical distribution derived from the data vector u is a point in the proba-

bility simplex, and its maximum likelihood estimate p̂ is a point in the model.

If these two points are close to each other then the model is a good fit for

the data. Assuming that the model is identifiable (i.e., the map f is locally

one-to-one), we can compute the unique parameter vector θ̂ which maps to p̂.

Every local and global maximum θ̂ in Θ of the log-likelihood function (3.19)

is a solution of the critical equations

∂ℓu
∂θ1

=
∂ℓu
∂θ2

= · · · =
∂ℓu
∂θd

= 0. (3.20)

The derivative of ℓu(θ) with respect to the unknown θi is the rational function

∂ℓu
∂θi

=
u1

f1(θ)

∂f1

∂θi
+

u2

f2(θ)

∂f2

∂θi
+ · · · +

um

fm(θ)

∂fm

∂θi
. (3.21)

The problem to be studied in this section is computing all solutions θ ∈ Cd

of the critical equations (3.20). Since (3.21) is a rational function, this set of

critical points is an algebraic variety outside the locus where the denominators

of these rational functions are zero. Hence the closure of the set of critical

points of ℓu is an algebraic variety in Cd, called the likelihood variety of the

model f with respect to the data u.

In order to compute the likelihood variety we proceed as follows. We in-

troduce m new unknowns z1, . . . , zm where zi represents the inverse of fi(θ).

The polynomial ring Q[θ, z] = Q[θ1, . . . , θd, z1, . . . , zm] is our “big ring”, as

Solution given by [June Huh: Varieties with maximum
likelihood degree one, J. Algebraic Statistics, 2014]

refined by [Eliana Duarte, Orlando Marigliano, B.St.: Discrete statistical

models with rational maximum likelihood estimator, Bernoulli, 2021]
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First Exercise Do Now
The following model has four outcomes: 0, 1, 2, or 3 heads.

Flip a biased coin. If it shows tails, stop.
Otherwise flip it again. If it shows tails, stop.
Otherwise flip it again. Stop. Record the number of heads.

This experiment is carried out N times. The data are summarized
in a vector (u0, u1, u2, u3) ∈ N4 with u0 + u1 + u2 + u3 = N.

1. The model is a curve in the tetrahedron ∆3, and hence in the
projective space P3. Determine its homogeneous prime ideal.

2. Write the MLE (p̂0, p̂1, p̂2, p̂3) explicitly in terms of the data.

2× 2-minors of

(
p0 p1 + p2 p2

p1 p3 − p1 p3 − p2

)

p̂0 = (3u0+2u1+u2)3

(3u0+3u1+2u2+u3)3 p̂1 = (3u0+2u1+u2)2(u1+u2+u3)
(3u0+3u1+2u2+u3)3

p̂2 = (3u0+2u1+u2)(u1+u2+u3)
(3u0+3u1+2u2+u3)2 p̂3 = u1+u2+u3

3u0+3u1+2u2+u3
.
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Projective Varieties

Let M be a variety in Pn with coordinates (p0 : p1 : · · · : pn).
For u ∈ Zn+1, the likelihood function is the rational function

Lu : M 99K C , p 7→ pu0
0 pu1

1 · · · punn
(p0 + p1 + · · ·+ pn)|u|

Let H be the arrangement of n + 2 hyperplanes in this formula.

Theorem
The number of complex critical points of Lu is independent of u,
provided u is generic. It is the ML degree of the model M∩∆n,
and it equals the signed Euler characteristic of M\H, provided
this very affine variety is smooth. Otherwise, MLdegree(M) equals

the Chern-Schwartz-MacPherson class of M\H, provided ....

[F. Catanese, S. Hoşten, A. Khetan, B. St: The maximum likelihood degree, American J. Math, 2006]

[J. Huh: The maximum likelihood degree of a very affine variety, Compositio Math, 2013]

[J. Huh, B. St.: Likelihood geometry, Combinatorial algebraic geometry, Springer LNM, 2014]

[J. Rodriguez, B. Wang: Computing Euler obstruction functions using maximum likelihood degrees, IMRN, 2020]
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Hyperplane Arrangements

Theorem (Varchenko 1995)

If M is a linear space then MLdegree(M) is the number of
bounded regions in the hyperplane arrangement M∩H in Rn,
where {p0 + p1 + · · ·+ pn = 0} is the hyperplane at infinity. For
positive u, every complex solution is real, one per bounded region.

Combinatorics and Linear Algebra: matroid, characteristic polynomial, Zaslavsky,....

[T. Brysiewicz, H. Eble, L. Kühne: Enumerating chambers of hyperplane arrangements with symmetry, May 2021]
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Second Exercise Do Now

Fix positive integers a, b, c , d , e, f , g , h, i , and consider the
following polynomial function in three complex variables:

xa1x
b
2 x

c
3 (x1 − x2)d(x1 − x3)e(x2 − x3)f (1− x1)g (1− x2)h(1− x3)i

How many critical points does this function have?
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From Linear to Nonlinear

Theorem (Varchenko 1995)

If M is a linear space then MLdegree(M) is the number of
bounded regions in the hyperplane arrangement M∩H in Rn,
where {p0 + p1 + · · ·+ pn = 0} is the hyperplane at infinity. For
positive u, every complex solution is real, one per bounded region.

Q: What if M is not linear? How to compute critical points of Lu?

A: Use Numerical Methods from Nonlinear Algebra.
15.05.21, 15(15HomotopyContinuation.jl

Page 1 of 2https://www.juliahomotopycontinuation.org/

HomotopyCon!nua!on.jl Guides Examples Docs About FAQ
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Find out at:
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Six Particles on a Line
The moduli space M0,6 = Gr(2, 6)◦/(C∗)6 is a very affine variety
of dimension 3. It embeds into P8\H by the 2× 2 minors of

[
0 1 1 1 1 1
−1 0 x1 x2 x3 1

]
.

The scaled minors sum to 1:
p23 = 5x1/9, p24 = x2/3, p25 = x3/9,

p34 = (x2 − x1)/9, p35 = (x3 − x1)/9, p45 = (x3 − x2)/9,
p36 = (1− x1)/3, p46 = (1− x2)/3, p56 = (1− x3)/3.

Given uij , we seek the critical points of the log-likelihood function

log(Lu) =
∑

uij log pij(x)

This is the potential in the CHY model. Its derivatives are the
scattering equations. Mandelstam invariants uij represent data.

[F. Cachazo, S. He, E. Yuan: Scattering equations and Kawai-Lewellen-Tye orthogonality, Physical Review D, 2014]

[F. Cachazo, N. Early, A. Guevara, S. Mizera: Scattering equations: from projective spaces to tropical
Grassmannians, J. High Energy Physics, 2019]
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Joy of Numerics
For certain positive integers uij , we find the six critical points:

x̂1 = 0.2400432759291, x̂2 = 0.5081722067398, x̂3 = 0.7770058668172;
x1 = 0.2234375508553, x2 = 0.8435430486816, x3 = 0.5187063898083;
x1 = 0.4819677264510, x2 = 0.2355452408806, x3 = 0.7811156798859;
x1 = 0.6182779262092, x2 = 0.8519744569452, x3 = 0.1559925583741;
x1 = 0.8619960607096, x2 = 0.2176050433439, x3 = 0.4532389470048;
x1 = 0.8631924172503, x2 = 0.5786694562520, x3 = 0.1579601163959.

The first solution gives the MLE

p̂23 = 0.13336, p̂24 = 0.16939, p̂25 = 0.08633, p̂34 = 0.02979, p̂35 = 0.05966,
p̂36 = 0.25332, p̂45 = 0.02987, p̂46 = 0.16394, p̂56 = 0.07433.

We note:

I all six solutions are real,
I for each permutation ijk, one solution has 0<xi<xj<xk<1,
I six bounded regions in the arrangement of planes {pij(x) = 0}.

[B St and Simon Telen: Likelihood equations and scattering amplitudes, Algebraic Statistics, 2021]
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CHY Scattering Equations
The moduli space has dimension m − 3 and is very affine:

M0,m = Gr(2,m)◦/(C∗)m.
[

0 1 1 1 · · · 1 1
−1 0 x1 x2 · · · xm−3 1

]

This is a linear statistical model in Pn, with n + 1 = m(m − 3)/2 states.

Mandelstam invariants serve as the data u. CHY scattering equations
characterize critical points of the log-likelihood function. By Varchenko,
the ML degree is (m − 3)!. For positive u, all critical points are real.

Certified numerical solutions found with HomotopyContinuation.jl:

m n + 1 (m−3)! tC tR tcert

10 35 5040 0.75 0.28 0.5
11 44 40320 13.4 3.4 4.0
12 54 362880 124.6 43.7 45.0
13 65 3628800 2141.5 578.2 1178.0

[Paul Breiding, Kemal Rose, Sascha Timme: Certifying zeros of polynomial systems using interval arithmetic, 2020]

14 / 28



CHY Scattering Equations
The moduli space has dimension m − 3 and is very affine:

M0,m = Gr(2,m)◦/(C∗)m.
[

0 1 1 1 · · · 1 1
−1 0 x1 x2 · · · xm−3 1

]

This is a linear statistical model in Pn, with n + 1 = m(m − 3)/2 states.

Mandelstam invariants serve as the data u. CHY scattering equations
characterize critical points of the log-likelihood function. By Varchenko,
the ML degree is (m − 3)!. For positive u, all critical points are real.

Certified numerical solutions found with HomotopyContinuation.jl:

m n + 1 (m−3)! tC tR tcert

10 35 5040 0.75 0.28 0.5
11 44 40320 13.4 3.4 4.0
12 54 362880 124.6 43.7 45.0
13 65 3628800 2141.5 578.2 1178.0

[Paul Breiding, Kemal Rose, Sascha Timme: Certifying zeros of polynomial systems using interval arithmetic, 2020]

14 / 28



Higher Dimensions

The moduli space for m points in general position in Pk−1,

X (k ,m) := Gr(k ,m)◦/(C∗)m,

is smooth and very affine of dimension (k−1)(m−k−1).
Euler characteristic is the ML degree of the CEGM model.

k = 3: m points in P2, no three collinear. Numerical computation yields:

m n + 1 ML degree tC tcert

6 14 26 0.02 0.01
7 28 1272 0.35 0.19
8 48 188112 70.03 47.71
9 75 74570400 last slide

These ML degrees were known, thanks to Cachazo et al. and
Thomas Lam (matroids, finite fields, Weil). We confirmed them.

Questions: Can all critical points be real? What about larger k ,m?
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Third Exercise Do Now

The 4-dimensional very affine variety X (3, 6) is given by matrices




0 0 1 1 1 1
0 −1 0 1 x1 x3

1 0 0 1 x2 x4


,

where x1, x2, x3, x4 ∈ C and all 3× 3-minors all nonzero.

1. What are the fibers of the map X (3, 6)→ X (3, 5) given by
deleting the last column? Find their Euler characteristic.

2. Show that X (3, 5) ' X (2, 5). Find its Euler characteristic.

3. Determine the Euler characteristic of X (3, 6).

26 = 13× 2
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Amplitudes and Positive Geometries

25/01/17 05:44

Page 1 of 1http://www.ics.uci.edu/~eppstein/0xDE/fg6.png

CEGM amplitudes are rational functions in the data u:

1
u12u34u56

+ 1
u12u56u123

+ 1
u23u56u123

+ 1
u23u56u234

+ 1
u34u56u234

+ 1
u16u23u45

+ 1
u12u34u345

+ 1
u12u45u123

+ 1
u12u45u345

+ 1
u16u23u234

+ 1
u16u34u234

+ 1
u16u34u345

+ 1
u16u45u345

+ 1
u23u45u123

They can be evaluated either combinatorially, or numerically,
by summing residues over all critical points of the likelihood function.

Inspired by
[N. Arkani-Hamed, Y. Bai and T. Lam: Positive geometries and canonical forms, J High Energy Physics, 2017]

[N. Arkani-Hamed, S. He and T. Lam: Stringy canonical forms, J High Energy Physics, 2021]

... we defined positive statistical models and their amplitudes.

These include all toric models, linear models, ML degree one models, ....
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Frequentist to Bayesian

Statisticians study marginal likelihood integrals

∫

Θ
p0(x)u0p1(x)u1 · · · pn(x)unµ(x)dx

for parametrized models Θ→M⊂ Pn.
The amplitude is a limit of a certain transformation.

Theorem
The amplitude of a positive model M is a rational function of the
data u0, . . . , un. It equals the volume of the dual polytope, and
can be computed from the toric Hessian of the log-likelihood:

amplitude(M) =
∑

ξ∈Crit(Lu)

det(HLu(ξ))−1.

Aside: In algebraic statistics, this relates to moment varieties:
[K. Kohn, B. Shapiro, B. St: Moment varieties of measures on polytopes, Annali della Scuola Normale, 2020]

[K. Kohn, K. Ranestad: Projective geometry of Wachspress coordinates, Foundations of Computational Math,2020]
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Toric Model

10.06.19, 21)15Information Theory of Cognitive Systems Group
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Back to two binary random variables (n = 3).
The independence model is the surface M = P1×P1 in P3.

The relevant polytope is the square [0, 1]2 times |u|. Translate
by u = (u2+u3, u1+u3), dualize, and measure the area, to get

amplitude(M) =
(u0 + u1 + u2 + u3)2

(u0+u1)(u2+u3)(u0+u2)(u1+u3)
.
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A Paper with Six Authors

[Daniele Agostini, Taylor Brysiewicz, Claudia Fevola, Lukas

Kühne, BSt and Simon Telen: Likelihood Degenerations]

We work over the Puiseux series field R{{t}} and use its valuation.

In English: We introduce a small positive parameter t with t → 0.

The data u have their coordinates in R{{t}}:

ui (t) = αi t
wi + higher order terms

Critical points p̂ have coordinates in the algebraic closure C{{t}}:

p̂j(t) = βj t
qj + higher order terms

Tropical MLE problem: Given the tropical data w = (w0, . . . ,wn)
compute the tropical critical points q = (q0, . . . , qn) in terms of w .

[D. Maclagan and B. St: Introduction to Tropical Geometry, AMS, 2015]
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Numerics meets Tropics: Happiness both ways

Exercise: Solve the quintic x5 − 5x4 − 4x3 + 20x2 − tx + 7t4 = 0.

Solution: The five zeros are x(t) =

2− 1
24 t − 5

6912 t
2 + · · · , −2− 1

56 t + 25
87808 t

2 + · · · , 5 + 1
105 t − 71

1157625 t
2,

1
20 t + 1

2000 t
2 − 5599967

800000 t3 + · · · , 7t3 + 980t5 + 274400t7 + · · · .

x(t) ∼ t0, t0, t0, t1, t3, val(x(t)) = 0, 0, 0, 1, 3

From T to N: Identify tropical solutions (cf. Newton polygon).
Use this to build a homotopy for numerical solving over R or C.

From N to T: Use advanced numerical tools (e.g. monodromy)
to solve equations for t = 10−3, 10−4, 10−5, . . .. From the
resulting numerical data over C, learn the tropical solutions.

We applied both directions to MLE and scattering equations.

21 / 28



Numerics meets Tropics: Happiness both ways

Exercise: Solve the quintic x5 − 5x4 − 4x3 + 20x2 − tx + 7t4 = 0.

Solution: The five zeros are x(t) =

2− 1
24 t − 5

6912 t
2 + · · · , −2− 1

56 t + 25
87808 t

2 + · · · , 5 + 1
105 t − 71

1157625 t
2,

1
20 t + 1

2000 t
2 − 5599967

800000 t3 + · · · , 7t3 + 980t5 + 274400t7 + · · · .

x(t) ∼ t0, t0, t0, t1, t3, val(x(t)) = 0, 0, 0, 1, 3

From T to N: Identify tropical solutions (cf. Newton polygon).
Use this to build a homotopy for numerical solving over R or C.

From N to T: Use advanced numerical tools (e.g. monodromy)
to solve equations for t = 10−3, 10−4, 10−5, . . .. From the
resulting numerical data over C, learn the tropical solutions.

We applied both directions to MLE and scattering equations.
21 / 28



Linear Models

Four leaves

1  2  3  4

1  2  3  4

4  3  1  2

3  4  1  2

2  1  3  41  3  2  4

1  3  2  4

1  4  2  3

1  4  2  3

4  1  2  3

4  2  3  1

3  1  2  4

3  2  1  4

2  3  1  4

2  4  1  3

The space of ultrametrics U4 is a two-dimensional fan with
15 maximal cones. Their adjacency forms a Petersen graph.matroids, Bergman fans, nbc bases, ....

Let X be a linear subspace of Pn, viewed as a statistical model.
We tropicalize both X and its orthogonal complement X⊥.

Theorem
If the tropical data vector w is sufficiently generic then
the following intersection consists of MLdegree(X ) many
distinct points. These are the tropical critical points

q̂ ∈ trop(X ) ∩ (w − trop(X⊥)).

Corollary

If X is general then q̂ = w0en+1 +
∑

i∈I wiei , where I runs over
all d-sets in {1, . . . , n}. These are the

(n
d

)
tropical critical points.
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Tropical CHY Scattering

CHY model M0,6 is a 3-dim’l linear space X in P8, giving an
arrangement of 9 planes in R3, with six bounded regions. Fix

w = (w24,w25, . . . ,w45) = (12, 6, 9, 12, 5, 1, 10, 11, 3)

One of the six tropical critical points is q̂ = (7, 5, 2, 0, 0, 0, 5, 2, 2):

Solutions are decompositions w = q̂ + (w − q̂) whose summands
respect circuits and cocircuits. Each gives a small arc in one region
that converges with the given rates to a vertex of the arrangement.
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Fourth Exercise

Consider the six critical points (x̂1, x̂2, x̂3) of

xa1x
b
2 x

c
3 (x1 − x2)d(x1 − x3)e(x2 − x3)f (1− x1)g (1− x2)h(1− x3)i

where
(
val(a), val(b), . . . , val(i)

)
= (12, 6, 9, 12, 5, 1, 10, 11, 3).

Compute all six tropical critical points: We already know

q̂ =
(
val(x̂1), val(x̂2), . . . , val(1− x̂3)

)
= (7, 5, 2, 0, 0, 0, 5, 2, 2).

The six tropical critical points q̂ are

(0, 0, 8, 4, 2, 0, 2, 0, 0) , (0, 5, 2, 2, 0, 0, 0, 0, 2) , (1, 0, 8, 0, 2, 0, 0, 1, 0) ,
(2, 5, 2, 0, 0, 0, 2, 3, 2) , (7, 5, 2, 0, 0, 0, 5, 2, 2) , (9, 0, 8, 0, 2, 0, 0, 8, 0).
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Soft Limits

Cachazo, Umbert and Zhang (2020) studied tropical MLE for the
model X (k ,m) with very specific tropical Mandelstam invariants

wI =

{
1 if m ∈ I

0 if m 6∈ I
indexed by k-sets I ⊂ {1, . . . ,m}.

Solutions are regular if they tropicalize to q̂ = 0; otherwise singular.

Regular solutions arise from generic fibers Fk,m of the map

X (k,m + 1) −→ X (k ,m).

The Fk,m are generic discriminantal hyperplane arrangements.

We count their bounded regions. Singular solutions are more
subtle. They come from special geometric loci in X (k ,m).

We compute these loci using numerical–tropical happiness.
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Discriminantal Arrangements

Theorem
For fixed dimension k, the number of bounded regions of Fk,m is a
polynomial in m of degree (k − 1)2. For k = 3, 4, 5, 6, 7, it equals

m − 3

8
(m3 − 3m2 + 2m − 8)

m − 4

1296
(m8−5m7−68m6+772m5−3299m4+7153m3−7650m2+3096m+1296)

m−5
7962624

(
m15−19m14+165m13−1687m12+14947m11+20847m10−1883209m9+19445731m8−105532464m7

+347718184m6 − 704585488m5 + 815190576m4 − 398830464m3 − 84195072m2 + 112637952m − 7962624
)

m−6
2985984000000

(
m24 − 44m23 + 911m22 − 11784m21+97541m20−336204m19−4467549m18+115776456m17

−1593224629m16 + 13128969276m15 − 19383488419m14 − 1059764682264m13 + 16113981947031m12

−136378934149764m11 + 803680447423841m10 − 3541838991169704m9 + 12070676668677656m8

−32308966820835264m7 + 67944291044051216m6 − 110339489042552704m5+133034610370502400m4

−111021306363648000m3 + 56477160852480000m2 − 12997485711360000m + 2985984000000
)

m−7
100306130042880000000

(
m35 − 83m34 + 3304m33 − 83972m32 + 1530340m31 + · · · − 100306130042880000000

)
[H. Koizumi, Y. Numata, A. Takemura: On intersection lattices of hyperplane

arrangements generated by generic points, Annals of Combinatorics, 2012]
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From Soft Limits to Hard Facts

Theorem
The ML degree of X (4, 8) equals 5,211,816.

Proof involves solving likelihood equations for all subproblems
representing singular solutions. Massive numerical computation with

lots of combinatorial bookkeeping. Blueprint for future tropical MLE.

We also verified that the ML degree of X (3, 9) equals

74,570,400 = 188112 · 205 + 420 · 81040 + 105 · 18768.

Our main theoretical result is a proof of the CUY conjecture on
special loci in X (3,m). [§5: Fibrations of points and lines in the plane]

Conclusion: Particle Physics guides us towards new computational
paradigms for likelihood inference in Algebraic Statistics. On route,
we are having fun with Combinatorics and Algebraic Geometry.
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2 How to be Rational

Let M be a discrete statistical model in the open simplex �n that has a well-defined maxi-
mum likelihood estimator � : �n !M. We also write � : Rn+1

>0 !M for the induced map
u 7! �(u/|u|) on all positive vectors. If the n + 1 coordinates of � are rational functions in
u, then we say that M has rational MLE. The following is our main result in this paper.

Theorem 1. The following are equivalent for a discrete statistical model M with MLE �:

(1) The model M has rational MLE.

(2) There exists a Horn pair (H, �) such that M is the image of the Horn map '(H,�).

(3) There exists a discriminantal triple (A,�,m) such that M is the image under the
monomial map �(�,m) of precisely one orthant (9) of the dual toric variety Y ⇤

A.

The MLE of the model satisfies the following relation on the open orthant Rn+1
>0 :

� = '(H,�) = �(�,m) �H. (1)

The goal of this section is to define all the terms seen in parts (2) and (3) of this theorem.

Example 2. We first discuss Theorem 1 for a very simple experiment: Flip a biased coin. If
it shows heads, flip it again. This is a statistical model with n = 2 given by the tree diagram

s0

s1

s0

s1

p0

p1

p2.

The model M is a curve in the probability triangle �2. The tree shows its parametrization

�1 ! �2 , (s0, s1) 7! (s2
0, s0s1, s1) where s0, s1 > 0 and s0 + s1 = 1.

The implicit representation of the curve M is the quadratic equation p0p2� (p0 + p1)p1 = 0.
Let (u0, u1, u2) be the counts from repeated experiments. A total of 2u0 + 2u1 + u2 coin

tosses were made. We estimate the parameters as the empirical frequency of heads resp. tails:

ŝ0 =
2u0 + u1

2u0 + 2u1 + u2

and ŝ1 =
u1 + u2

2u0 + 2u1 + u2

.

The MLE is the retraction from the triangle �2 to the curve M given by the rational formula

�(u0, u1, u2) = (ŝ2
0, ŝ0ŝ1, ŝ1) =

✓
(2u0 + u1)

2

(2u0+2u1+u2)2
,

(2u0+u1)(u1+u2)

(2u0 + 2u1 + u2)2
,

u1 + u2

2u0+2u1+u2

◆
.

3

Four leaves

1  2  3  4

1  2  3  4

4  3  1  2

3  4  1  2

2  1  3  41  3  2  4

1  3  2  4

1  4  2  3

1  4  2  3

4  1  2  3

4  2  3  1

3  1  2  4
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The space of ultrametrics U4 is a two-dimensional fan with
15 maximal cones. Their adjacency forms a Petersen graph.
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Nonlinear algebra provides modern math-
ematical tools to address challenges arising 
in the sciences and engineering. It is useful 
everywhere, where polynomials appear: in 
particular, data and computational sciences, 
statistics, physics, optimization. The book 
offers an invitation to this broad and fast-
developing area. It is not an extensive 
encyclopedia of known results, but rather 
a first introduction to the subject, allowing 
the reader to enter into more advanced topics. It was designed as the next step 
after linear algebra and well before abstract algebraic geometry. The book presents 
both classical topics—like the Nullstellensatz and primary decomposition—and 
more modern ones—like tropical geometry and semidefinite programming. The 
focus lies on interactions and applications. Each of the thirteen chapters introduces  
fundamental concepts. The book may be used for a one-semester course, and 
the over 200 exercises will help the readers to deepen their understanding of the 
subject.
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