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Maximum Likelihood

A discrete statistical model is a subset M of the simplex A,,.

The points p in A, are probability distributions on the state space
{0,1,...,n}. Coordinates p; are positive and po+pi+---+pp = 1.

Our data is an empirical distribution u € A,. Here u;
is the fraction of samples observed to be in state .
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Maximum Likelihood

A discrete statistical model is a subset M of the simplex A,,.

The points p in A, are probability distributions on the state space
{0,1,...,n}. Coordinates p; are positive and po+pi+---+pp = 1.

Our data is an empirical distribution u € A,. Here u;
is the fraction of samples observed to be in state .

The maximum likelihood estimator (MLE) of M is the function
d:A, > M, u—p,
where p € M is the maximizer of the log-likelihood function
n
p = Y uj-log(py).
i=0

Key Point: /f M is a variety then ® is an algebraic function.
The algebraic degree of ® is the maximum likelihood degree of M.
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Geometry A picture from [ASCB '05]

parameter space

[T1
T )
L]

probability simplex

Fig. 3.2. The geometry of maximum likelihood estimation.
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Independence

Let n = 3 and consider two binary random variables. The
independence model M is a surface in the tetrahedron As.

Points in the model are positive rank one 2 x 2 matrices [22 zl] whose
3

entries sum to one. Data is a 2 x 2 integer matrix u.
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Independence

Let n = 3 and consider two binary random variables. The
independence model M is a surface in the tetrahedron As.

Points in the model are positive rank one 2 x 2 matrices [zg zl] whose
3

entries sum to one. Data is a 2 x 2 integer matrix u. The sample
size is |u| = up+ui+up+u3. The empirical distribution is |Tll|”'
The ML degree is 1 because the MLE is a rational function:

Po = |ul2(uo+ur)(wo+w2), P = |u|?(uo+ur)(ur+us),
po = |ul2(vo+us)(uo+w2),  P3 = |ul?(uotus)(urtus).
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Probability Tree et

Experiment: Flip a biased coin. If it shows heads, flip it again.
The model M also has ML degree 1. It is the parametric curve

Al — Az s (So, 51) — (Sg7 S0S1, 51) where sp, 57 > 0 and sp + 51 = 1.
Implicit representation:

M = {(po,p1,p2) € D2 : pop2 = (po + p1)p1 }-

Perform experiments and record outcomes in the data vector (up, uz, u2) .
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Probability Tree et

Experiment: Flip a biased coin. If it shows heads, flip it again.
The model M also has ML degree 1. It is the parametric curve
Al — Az s (So, 51) — (Sg7 S0S1, 51) where sp, 57 > 0 and sp + 51 = 1.

Implicit representation:

M = {(po,p1,p2) € D2 : pop2 = (po + p1)p1 }-
Perform experiments and record outcomes in the data vector (up, uz, u2) .
Estimated parameters are empirical frequency of heads and tails:
2ug + ty
S = —m———
2ug + 2u1 + s

uy + up

and § = —————.
! 2u9 + 2u1 + Uy

MLE is given by alternating products of positive linear forms:
(2UO + U1)2 (2U0+U1)(U1+U2) up + up )
2UO+2U1+U2)2 ’ (2U0 +2u1 + U2)2 " 2up+-2ur+up
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How to be Rational?

Analogy: Let M C R" and @ : R” — M its Euclidean nearest point
map. Then & is a rational function if and only if M is a linear space.

Question: For statistical models M C A, role of ® is played by MLE.
Which M play the role of linear spaces? Which M have ML degree 17

. probability simplex
\ i
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Analogy: Let M C R" and @ : R” — M its Euclidean nearest point
map. Then & is a rational function if and only if M is a linear space.

Question: For statistical models M C A, role of ® is played by MLE.
Which M play the role of linear spaces? Which M have ML degree 17

probability simplex
\

Fig. 3.2. The geometry of

Solution given by [June Huh: Varieties with maximum
likelihood degree one, J. Algebraic Statistics, 2014]

refined by [Eliana Duarte, Orlando Marigliano, B.St.: Discrete statistical
models with rational maximum likelihood estimator, Bernoulli, 2021]
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First Exercise Do Now
The following model has four outcomes: 0, 1, 2, or 3 heads.
Flip a biased coin. If it shows tails, stop.

Otherwise flip it again. If it shows tails, stop.
Otherwise flip it again. Stop. Record the number of heads.

This experiment is carried out N times. The data are summarized
in a vector (ug, Uy, tp, uz) € N* with ug + ug + up + u3 = N.

1. The model is a curve in the tetrahedron Az, and hence in the
projective space P2, Determine its homogeneous prime ideal.
2. Write the MLE (po, p1, p2, P3) explicitly in terms of the data.
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First Exercise Do Now
The following model has four outcomes: 0, 1, 2, or 3 heads.
Flip a biased coin. If it shows tails, stop.

Otherwise flip it again. If it shows tails, stop.
Otherwise flip it again. Stop. Record the number of heads.

This experiment is carried out N times. The data are summarized
in a vector (ug, Uy, tp, uz) € N* with ug + ug + up + u3 = N.

1. The model is a curve in the tetrahedron Az, and hence in the
projective space P2, Determine its homogeneous prime ideal.

2. Write the MLE (po, p1, p2, P3) explicitly in terms of the data.

2 x 2-minors of Po pLt P2 P2
P1 P3—PpP1 P3— P2

A (Bupt2utu)? A (Bug+2urtun)?(uHuntus)
PO = Gupt3u+2ur+u3)3 p1 = (Buo+3ur+2up+us)3

A (Bupt2ur+up)(urtustus) N uiturtus

P2 (3u0+3u1+2u2+u3)2 P3 = Sup+3u1+2ur+u3 *

7/28



Projective Varieties

Let M be a variety in P" with coordinates (po : p1: -+ : pn).
For u € Z"t1, the likelihood function is the rational function

POPL Py
(Po +p1+ -+ pn)l¥!

L, M---C, p—

Let H be the arrangement of n+ 2 hyperplanes in this formula.

Theorem

The number of complex critical points of L, is independent of u,
provided u is generic. It is the ML degree of the model M N A,
and it equals the signed Euler characteristic of M\H, provided
this very affine variety is smooth. Otherwise, MLdegree(M) equals

the Chern-Schwartz-MacPherson class of M\H, provided ....

F. Catanese, S. Hosten, A. Khetan, B. St: The maximum likelihood degree, American J. Math, 2006]
J. Huh: The maximum likelihood degree of a very affine variety, Compositio Math, 2013]

J. Huh, B. St.: Likelihood geometry, Combinatorial algebraic geometry, Springer LNM, 2014]

J. Rodriguez, B. Wang: Computing Euler obstruction functions using maximum likelihood degrees, IMRN, 2020]
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Hyperplane Arrangements

Theorem (Varchenko 1995)

If M is a linear space then MLdegree(M) is the number of
bounded regions in the hyperplane arrangement M NH in R",
where {po + p1 + - - - + pn = 0} is the hyperplane at infinity. For
positive u, every complex solution is real, one per bounded region.
Combinatorics and Linear Algebra:  matroid, characteristic polynomial, Zaslavsky,....

[T. Brysiewicz, H. Eble, L. Kiihne: Enumerating chambers of hyperplane arrangements with symmetry, May 2021]

\/ /
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Second Exercise Do Now

Fix positive integers a, b, c,d, e, f,g, h,i, and consider the
following polynomial function in three complex variables:

g5 (xa = x2) (= x3)°(x2 = x3) (1 = x1)8(1 = x2)"(1 = x3)’

How many critical points does this function have?

/
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From Linear to Nonlinear

Theorem (Varchenko 1995)

If M is a linear space then MLdegree(M) is the number of
bounded regions in the hyperplane arrangement M NH in R",
where {po + p1 + - - + pn = 0} is the hyperplane at infinity. For
positive u, every complex solution is real, one per bounded region.

Q: What if M is not linear? How to compute critical points of L,?
A: Use Numerical Methods from Nonlinear Algebra.

3264
Homotopy CONICS
Continuationjl  seconp

Invitation to
Nonlinear Algebra

A package for the numerical solution of systems of polynomial equations.

Get started Crash Course Mateusz Michatek
Bernd Sturmfels
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Six Particles on a Line
The moduli space My g = Gr(2,6)°/(C*)® is a very affine variety
of dimension 3. It embeds into P8\ by the 2 x 2 minors of

O 11 1 1 1
-1 0 x1 x x3 1

The scaled minors sum to 1:
p23 = 5x1/9, paa = x2/3, ps = x3/9,
p3s = (x2 —x1)/9, p3s = (x3 —x1)/9, pas = (x3 — x2)/9,
pss = (1—x1)/3, pas=(1—x)/3, pss=(L—x3)/3.

Given uj;, we seek the critical points of the log-likelihood function

log(L Z ujj log pij(x

This is the potential in the CHY model. Its derivatives are the
scattering equations. Mandelstam invariants uj; represent data.

[F. Cachazo, S. He, E. Yuan: Scattering equations and Kawai-Lewellen-Tye orthogonality, Physical Review D, 2014]

[F. Cachazo, N. Early, A. Guevara, S. Mizera: Scattering equations: from projective spaces to tropical
Grassmannians, J. High Energy Physics, 2019]
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Joy of Numerics

For certain positive integers ujj, we find the six critical points:

Xy = 0.2400432759291, %, = 0.5081722067398, X3 = 0.7770058668172;
x; = 0.2234375508553, x, = 0.8435430486816, x3 = 0.5187063898083;
x; = 0.4819677264510, x> = 0.2355452408806, x3 = 0.7811156798859;
x; = 0.6182779262092, x> = 0.8519744569452, x3 = 0.1559925583741;
x; = 0.8619960607096, x> = 0.2176050433439, x3 = 0.4532389470048;
x; = 0.8631924172503, x> = 0.5786694562520, x3 = 0.1579601163959.

The first solution gives the MLE

po3 = 0.13336, pog = 0.16939, o5 = 0.08633, fas = 0.02979, P35 = 0.05966,
Pss = 0.25332,  pas = 0.02987, pas = 0.16394, fsg = 0.07433.

We note:

» all six solutions are real,

» for each permutation ijk, one solution has 0 <x; <x; <xx <1,

> six bounded regions in the arrangement of planes {p;(x) = 0}.
[B St and Simon Telen: Likelihood equations and scattering amplitudes, Algebraic Statistics, 2021]
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CHY Scattering Equations

The moduli space has dimension m — 3 and is very affine:
Mo,m = Gr(2, m)°/(C*)™.

o1 1 1 - 1 1
-1 0 X1 X o Xm—3 1

This is a linear statistical model in P", with n4+ 1 = m(m — 3)/2 states.

Mandelstam invariants serve as the data u. CHY scattering equations
characterize critical points of the log-likelihood function. By Varchenko,
the ML degree is (m — 3)!. For positive u, all critical points are real.
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CHY Scattering Equations

The moduli space has dimension m — 3 and is very affine:
Mo,m = Gr(2, m)°/(C*)™.
o 1 1 1 - 1 1
-1 0 x1 x -+ Xmpo3 1
This is a linear statistical model in P", with n4+ 1 = m(m — 3)/2 states.

Mandelstam invariants serve as the data u. CHY scattering equations
characterize critical points of the log-likelihood function. By Varchenko,
the ML degree is (m — 3)!. For positive u, all critical points are real.

Certified numerical solutions found with HomotopyContinuation. j1:

m ‘ n+1 (m=3)! tc tr teert
10| 35 5040 0.75 028 05

11 44 40320 13.4 3.4 4.0

12 54 362880 124.6 43.7 450
13| 65 3628800 21415 578.2 1178.0

[Paul Breiding, Kemal Rose, Sascha Timme: Certifying zeros of polynomial systems using interval arithmetic, 2020]
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Higher Dimensions

The moduli space for m points in general position in P¥~1,

= Gr(k,m)°/(C*)™,

X(k, m)

is smooth and very affine of dimension (k—1)(m—k—1).
Euler characteristic is the ML degree of the CEGM model.

k = 3: m points in P2, no three collinear. Numerical computation yields:

m | n+1 ML degree tc teert
6 14 26 0.02 0.01
7 28 1272 0.35 0.19
8 438 188112 70.03 47.71
9 75 74570400  /ast slide

These ML degrees were known, thanks to Cachazo et al. and
Thomas Lam (matroids, finite fields, Weil). We confirmed them.

Questions: Can all critical points be real? What about larger k, m?
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Third Exercise

The 4-dimensional very affine variety X(3,6) is given by matrices

0O 0 11 1 1
0 -1 0 1 x3 x3
1 0 01 X2 X4

I

where x1, x2, x3,x4 € C and all 3 x 3-minors all nonzero.

1. What are the fibers of the map X(3,6) — X(3,5) given by
deleting the last column? Find their Euler characteristic.

2. Show that X(3,5) ~ X(2,5). Find its Euler characteristic.

3. Determine the Euler characteristic of X(3,6).

16/28



Third Exercise
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deleting the last column? Find their Euler characteristic.

2. Show that X(3,5) ~ X(2,5). Find its Euler characteristic.

3. Determine the Euler characteristic of X(3,6).

26 = 13 x 2
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Amplitudes and Positive Geometries /@

SN
- -2
2N /
NP

WV

CEGM amplitudes are rational functions in the data u:

2

2
N8/

N

1 0 1 0 1 0 1 1 1 1

U712 U34 Usg Uy2 Usg U123 Up3 Usg U123 Up3 Usg U234 L34 Usg U234 U6 U23 Uss U12 U34 U345
1 1 1 1 1 e 1 1

U122 Ugs U123 U12 Uas U34s U6 U23 U234 U16 U34 U234 U16 U34 U345 U16 Uss U345 L23 U455 U123

They can be evaluated either combinatorially, or numerically,
by summing residues over all critical points of the likelihood function.

Inspired by

[N. Arkani-Hamed, Y. Bai and T. Lam: Positive geometries and canonical forms, J High Energy Physics, 2017]

[N. Arkani-Hamed, S. He and T. Lam: Stringy canonical forms, J High Energy Physics, 2021]

. we defined positive statistical models and their amplitudes.
These include all toric models, linear models, ML degree one models, ....
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Frequentist to Bayesian

Statisticians study marginal likelihood integrals

/@ P(x)"p1(x)" - ()" (x)dx

for parametrized models © — M C P".
The amplitude is a limit of a certain transformation.

Theorem

The amplitude of a positive model M is a rational function of the
data ug, ..., u,. It equals the volume of the dual polytope, and
can be computed from the toric Hessian of the log-likelihood:

amplitude(M) = Z det(Hy, (€)™
¢eCrit(Ly)

Aside: In algebraic statistics, this relates to moment varieties:
[K. Kohn, B. Shapiro, B. St: Moment varieties of measures on polytopes, Annali della Scuola Normale, 2020]

[K. Kohn, K. Ranestad: Projective geometry of Wachspress coordinates, Foundations of Computational Math,2020]
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Toric Model

Jarin

nnnEw=:

Back to two binary random variables (n = 3).
The independence model is the surface M = P! xP! in P3.

The relevant polytope is the square [0,1]? times |u|. Translate
by u = (up+us3, u;+us), dualize, and measure the area, to get

(uo +u+ux+ U3)2
(up+u1)(ua+u3)(uo+u2)(ur+us)’

amplitude(M) =
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A Paper with Six Authors

[Daniele Agostini, Taylor Brysiewicz, Claudia Fevola, Lukas
Kiihne, BSt and Simon Telen: Likelihood Degenerations]

We work over the Puiseux series field R{{t}} and use its valuation.

In English: We introduce a small positive parameter t with t — 0.

The data u have their coordinates in R{{t}}:
ui(t) = «;jt"i + higher order terms

Critical points p have coordinates in the algebraic closure C{{t}}:

pj(t) = pB;jt% + higher order terms
Tropical MLE problem: Given the tropical data w = (wp, ..., w,)
compute the tropical critical points g = (qo, - .., qn) in terms of w.

[D. Maclagan and B. St: Introduction to Tropical Geometry, AMS, 2015]
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Numerics meets Tropics: Happiness both ways

Exercise: Solve the quintic x® — 5x* — 4x3 +20x? — tx + 7t* = 0.

Solution: The five zeros are x(t) =

1 5 .2 1 25 .2 1 71 42

2_ﬂt_@t + _2_%t+87808t te 5+ﬁt_ 1157625 ¢ -
1 1 42 5599967 .3 3 5 7
0t + 3000t — o000 .+ 7t> +980t> + 274400t" + - - - .
x(t) ~ t%,t0 19 1 13, val(x(t)) = 0,0,0,1,3
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Numerics meets Tropics: Happiness both ways

Exercise: Solve the quintic x® — 5x* — 4x3 +20x? — tx + 7t* = 0.

Solution: The five zeros are x(t) =

1 5 .2 1 25 .2 1 71 42

2_ﬂt_@t + _2_%t+87808t te 5+ﬁt_ 1157625 ¢ -
1 1 42 5599967 .3 3 5 7
0t + 3000t — o000 .+ 7t> +980t> + 274400t" + - - - .
x(t) ~ t%,t0 19 1 13, val(x(t)) = 0,0,0,1,3

From T to N: Identify tropical solutions (cf. Newton polygon).
Use this to build a homotopy for numerical solving over R or C.

From N to T: Use advanced numerical tools (e.g. monodromy)
to solve equations for t =1073,1074,107°,....  From the
resulting numerical data over C, learn the tropical solutions.
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Linear Models

Let X be a linear subspace of P”, viewed as a statistical model.
We tropicalize both X and its orthogonal complement X

Theorem

If the tropical data vector w is sufficiently generic then
the following intersection consists of MLdegree(X) many
distinct points. These are the tropical critical points

§ € trop(X) N (w — trop(X1)).

Corollary

If X is general then § = wpep11 + Eiel w;e; , where | runs over
all d-sets in {1,...,n}. These are the ([}) tropical critical points.
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Tropical CHY Scattering

CHY model Mg is a 3-dim'l linear space X in P8, giving an
arrangement of 9 planes in R3, with six bounded regions. Fix

w = (W24,W25,...,W45) = (12,6,9,12,5,1,10,11,3)

One of the six tropical critical pointsis ¢ = (7.5,2.0,0.0,5,2.2):

Solutions are decompositions w = § + (w — §) whose summands
respect circuits and cocircuits. Each gives a small arc in one region
that converges with the given rates to a vertex of the arrangement.
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Fourth Exercise

Consider the six critical points (X1, %2, X3) of

X x5 (a —x2)?(xa = x3)° (2 — x3) (1 = x1)8(1 = x2)"(1 = x3)’

where  (val(a), val(b),...,val(i)) = (12,6,9,12,5,1,10,11,3).

Compute all six tropical critical points: We already know
§ = (val(%),val(%2),...,val(1 — %3)) = (7.5,2,0,0,0,5,2,2).
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Fourth Exercise

Consider the six critical points (X1, %2, X3) of
xxxs (a — x2)?(a — x3)° (2 — x3) (1 = x1)8(1 — x2)"(1 — x3)’

where  (val(a), val(b),...,val(i)) = (12,6,9,12,5,1,10,11,3).

Compute all six tropical critical points: We already know
g = (val(%1),val(%),...,val(1 — %)) = (7,5.2,0,0,0,5,2,2).

The six tropical critical points § are

(0a0a8747270a2a070)7 (075a2a2a070703072)a ( )
(2,5,2,0,0,0,2,3,2), (7.5.2.0.0.0.5.2.2),
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Soft Limits

Cachazo, Umbert and Zhang (2020) studied tropical MLE for the
model X(k, m) with very specific tropical Mandelstam invariants

1 iftmel
w) — . indexed by k-sets | C {1,..., m}.
0 itmgl

Solutions are regular if they tropicalize to § = 0; otherwise singular.
Regular solutions arise from generic fibers Fy p, of the map
X(k,m+1) — X(k, m).

The Fy , are generic discriminantal hyperplane arrangements.

We count their bounded regions. Singular solutions are more
subtle. They come from special geometric loci in X(k, m).

We compute these loci using numerical—tropical happiness.
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Discriminantal Arrangements

Theorem

For fixed dimension k, the number of bounded regions of Fy , is a
polynomial in m of degree (k —1)?. For k = 3,4,5,6,7, it equals

m—3

8 (m*> —3m? +2m—8)
4
e (=5 —68m®+772m®—3299m"+.7153m’ ~7650m* +3096m-+1296)

e (' —19m' +165m!3 —1687m'%+14947m'! +20847m'® —1883209m° +19445731m® —105532464m’
+347718184m° — 704585488m° + 815190576m* — 398830464m° — 84195072m> + 112637952m — 7962624)

sogseagogs (M — 44m® + 911m* — 11784m*! +97541m* —336204m"® —4467549m'® +115776456m" "
—1593224629m'0 + 13128969276m'®> — 19383488419m'* — 1059764682264m"3 + 16113981947031m"2
—136378934149764m'! + 803680447423841m'0 — 3541838991169704m° + 12070676668677656m°
—32308066820835264m’ + 67944291044051216m% — 110339489042552704m° +-133034610370502400m*
—111021306363648000m> + 56477160852480000m? — 12997485711360000m -+ 2085984000000)

TO030E e Tasgauaaaas (M7 — 83m>* + 3304m>® — 83972m>2 + 1530340m°! + - - . — 100306130042880000000)

[H. Koizumi, Y. Numata, A. Takemura: On intersection lattices of hyperplane
arrangements generated by generic points; Annalssof Combinatories,, 2012}
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From Soft Limits to Hard Facts

Theorem
The ML degree of X(4,8) equals 5,211,816.

Proof involves solving likelihood equations for all subproblems
representing singular solutions. Massive numerical computation with

lots of combinatorial bookkeeping. Blueprint for future tropical MLE.
We also verified that the ML degree of X(3,9) equals

74,570,400 = 188112-205 + 420-81040 + 105 - 18768.

Our main theoretical result is a proof of the CUY conjecture on
special loci in X(3, m). [§5: Fibrations of points and lines in the plane]
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From Soft Limits to Hard Facts

Theorem
The ML degree of X(4,8) equals 5,211,816.

Proof involves solving likelihood equations for all subproblems
representing singular solutions. Massive numerical computation with

lots of combinatorial bookkeeping. Blueprint for future tropical MLE.
We also verified that the ML degree of X(3,9) equals

74,570,400 = 188112-205 + 420-81040 + 105 - 18768.

Our main theoretical result is a proof of the CUY conjecture on
special loci in X(3, m). [§5: Fibrations of points and lines in the plane]

Conclusion: Particle Physics guides us towards new computational
paradigms for likelihood inference in Algebraic Statistics. On route,
we are having fun with Combinatorics and Algebraic Geometry.
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Thanks for Listening

Invitation to
Nonlinear Algebra

Mateusz Michatek
Bernd Sturmfels
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