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Real-rooted polynomials:

1. Let p ∈ R[x] be a degree d polynomial with only nonnegative coefficients
that is symmetric with respect to n ≥ d and real-rooted. Show that p is
γ-positive. Show that the converse need not hold.

2. Let p, q ∈ R[x] real rooted with positive leading coefficients. Prove that
the Wronskian W (p, q) = p′q−q′p is nonpositive on R if and only if p � q.
In particular, we have that (p′)2−p·q′′ is nonnegative for every real rooted
polynomial p.

3. Use the Hermite-Biehler Theorem to prove the following:

(a) p � αp for all α ∈ R.

(b) If p � q then q � −p.
(c) If p � q then αp � αq for all α ∈ R \ {0}.

4. If p � q and p 6≡ 0 we say p is a proper interleaver of q. We say that
the polynomials (pi)

n
i=1 are 2-compatible if for all i, j ∈ [n] the polynomial

λipi + λjpj is real-rooted for all λi, λj ≥ 0. A result of Chudnovsky and
Seymour states that a sequence of polynomials (pi)

n
i=1 is 2-compatible if

and only if p1, . . . , pn have a common proper interleaver. Use this obser-
vation to prove that if (pi)

n
i=1 and (qi)

n
i=1 be two interlacing sequences

then
p1qn + p2qn−1 + · · ·+ pnq1

is real-rooted.

5. The independence polynomial of a graphG = (V,E) is I(G;x) =
∑

i≥0 αix
i

where αi is the number of independent sets of size i in G; i.e., the sets
of i vertices of G in which no two elements are adjacent in G. Show
that the independence polynomial of the path and cycle on n vertices are
real-rooted.

6. Let Es
n be the s-Eulerian polynomial for s = (s1, . . . , sn) and let s′ =

(s1, . . . , sn−1).
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(a) Show that for all i ∈ [sn − 1]

Es,i(x) =

ti−1∑
j=0

xEs′,j(x) +

sn−1−1∑
j=ti

Es′,j(x),

where ti = disn−1/sne.
(b) Show that the above recursion maps interlacing sequences to inter-

lacing sequences.

7. Let (pi)
n
i=0 be a sequence of degree d real-rooted polynomials such that

pi−1 � pi for all i ∈ [n] and p0 � pn. Show that (pi)
n
i=0 is interlacing.

8. Let p, q, h ∈ R[x] be degree d real-rooted polynomials with positive leading
coefficients. Show that if p � q and p � h then for all λ, µ ≥ 0, p � λq+µh.

9. Show that (x+ 1)E(xn) = xE((x+ 1)n).

10. Let ∆ be a Boolean cell complex. Show that fsd(∆) = E(f∆).

11. Show that a polynomial p =
∑d

i=0 pix
i with only nonnegative coefficients

is alternatingly increasing if and only if

0 ≤ p0 ≤ pd ≤ p1 ≤ pd−1 ≤ · · · ≤ pb d+1
2 c

.

Multivariate stable polynomials:

1. Write down the symbols for the operations from Lemma 11 and prove
their stability.

2. Prove that the elementary symmetric polynomials are strongly Rayleigh
by using Newton’s inequalities.

3. Let X the diagonal matrix with diagonal entries x1, . . . , xn and let A be a
real symmetric n×n matrix. Let M be a matroid of rank r with the half-
plane property. Prove that the sum of all principal r× r minors of X+A,
that correspond to a basis of M , is a stable polynomial in x1, . . . , xn.

4. Show that the elementary symmetric polynomial ed,n has a determinantal
representation if and only if d ≤ 1 or n− d ≤ 1.

5. Prove that the class of matroids with the half-plane property is closed
under taking minors and duals.

Lorentzian polynomials:

1. Let h ∈ R[x1, . . . , xn] homogeneous of degree 2 with nonnegative coeffi-
cients. Show that h is Lorentzian if and only if h is stable.

2. Let h =
∑d

i=0 aix
i
1x

d−i
2 . Prove that h is Lorentzian if and only if the

sequence a1, . . . , ad is an an ultra log-concave sequence of nonnegative
numbers with no internal zeros.
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3. Construct a Lorentzian polynomial which is not stable.

4. Show that the elementary symmetric polynomial ed,n can be written as
vol(x1K1 + . . .+ xnKn) for some convex bodies Ki if and only if d ≤ 1 or
n− d ≤ 1.
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