Real-rooted and Hyperbolic Polynomials Tutorial Problem Set

Mario Kummer and Liam Solus

March 2022

Real-rooted polynomials:

1. Let $p \in \mathbb{R}[x]$ be a degree d polynomial with only nonnegative coefficients that is symmetric with respect to $n \geq d$ and real-rooted. Show that p is γ-positive. Show that the converse need not hold.
2. Let $p, q \in \mathbb{R}[x]$ real rooted with positive leading coefficients. Prove that the Wronskian $W(p, q)=p^{\prime} q-q^{\prime} p$ is nonpositive on \mathbb{R} if and only if $p \preceq q$. In particular, we have that $\left(p^{\prime}\right)^{2}-p \cdot q^{\prime \prime}$ is nonnegative for every real rooted polynomial p.
3. Use the Hermite-Biehler Theorem to prove the following:
(a) $p \preceq \alpha p$ for all $\alpha \in \mathbb{R}$.
(b) If $p \preceq q$ then $q \preceq-p$.
(c) If $p \preceq q$ then $\alpha p \preceq \alpha q$ for all $\alpha \in \mathbb{R} \backslash\{0\}$.
4. If $p \preceq q$ and $p \not \equiv 0$ we say p is a proper interleaver of q. We say that the polynomials $\left(p_{i}\right)_{i=1}^{n}$ are 2 -compatible if for all $i, j \in[n]$ the polynomial $\lambda_{i} p_{i}+\lambda_{j} p_{j}$ is real-rooted for all $\lambda_{i}, \lambda_{j} \geq 0$. A result of Chudnovsky and Seymour states that a sequence of polynomials $\left(p_{i}\right)_{i=1}^{n}$ is 2 -compatible if and only if p_{1}, \ldots, p_{n} have a common proper interleaver. Use this observation to prove that if $\left(p_{i}\right)_{i=1}^{n}$ and $\left(q_{i}\right)_{i=1}^{n}$ be two interlacing sequences then

$$
p_{1} q_{n}+p_{2} q_{n-1}+\cdots+p_{n} q_{1}
$$

is real-rooted.
5. The independence polynomial of a graph $G=(V, E)$ is $I(G ; x)=\sum_{i>0} \alpha_{i} x^{i}$ where α_{i} is the number of independent sets of size i in G; i.e., the sets of i vertices of G in which no two elements are adjacent in G. Show that the independence polynomial of the path and cycle on n vertices are real-rooted.
6. Let E_{n}^{s} be the s-Eulerian polynomial for $s=\left(s_{1}, \ldots, s_{n}\right)$ and let $s^{\prime}=$ $\left(s_{1}, \ldots, s_{n-1}\right)$.
(a) Show that for all $i \in\left[s_{n}-1\right]$

$$
E_{s, i}(x)=\sum_{j=0}^{t_{i}-1} x E_{s^{\prime}, j}(x)+\sum_{j=t_{i}}^{s_{n-1}-1} E_{s^{\prime}, j}(x)
$$

where $t_{i}=\left\lceil i s_{n-1} / s_{n}\right\rceil$.
(b) Show that the above recursion maps interlacing sequences to interlacing sequences.
7. Let $\left(p_{i}\right)_{i=0}^{n}$ be a sequence of degree d real-rooted polynomials such that $p_{i-1} \preceq p_{i}$ for all $i \in[n]$ and $p_{0} \preceq p_{n}$. Show that $\left(p_{i}\right)_{i=0}^{n}$ is interlacing.
8. Let $p, q, h \in \mathbb{R}[x]$ be degree d real-rooted polynomials with positive leading coefficients. Show that if $p \preceq q$ and $p \preceq h$ then for all $\lambda, \mu \geq 0, p \preceq \lambda q+\mu h$.
9. Show that $(x+1) \mathcal{E}\left(x^{n}\right)=x \mathcal{E}\left((x+1)^{n}\right)$.
10. Let Δ be a Boolean cell complex. Show that $f_{\mathrm{sd}(\Delta)}=\mathcal{E}\left(f_{\Delta}\right)$.
11. Show that a polynomial $p=\sum_{i=0}^{d} p_{i} x^{i}$ with only nonnegative coefficients is alternatingly increasing if and only if

$$
0 \leq p_{0} \leq p_{d} \leq p_{1} \leq p_{d-1} \leq \cdots \leq p_{\left\lfloor\frac{d+1}{2}\right\rfloor} .
$$

Multivariate stable polynomials:

1. Write down the symbols for the operations from Lemma 11 and prove their stability.
2. Prove that the elementary symmetric polynomials are strongly Rayleigh by using Newton's inequalities.
3. Let X the diagonal matrix with diagonal entries x_{1}, \ldots, x_{n} and let A be a real symmetric $n \times n$ matrix. Let M be a matroid of rank r with the halfplane property. Prove that the sum of all principal $r \times r$ minors of $X+A$, that correspond to a basis of M, is a stable polynomial in x_{1}, \ldots, x_{n}.
4. Show that the elementary symmetric polynomial $e_{d, n}$ has a determinantal representation if and only if $d \leq 1$ or $n-d \leq 1$.
5. Prove that the class of matroids with the half-plane property is closed under taking minors and duals.

Lorentzian polynomials:

1. Let $h \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ homogeneous of degree 2 with nonnegative coefficients. Show that h is Lorentzian if and only if h is stable.
2. Let $h=\sum_{i=0}^{d} a_{i} x_{1}^{i} x_{2}^{d-i}$. Prove that h is Lorentzian if and only if the sequence a_{1}, \ldots, a_{d} is an an ultra log-concave sequence of nonnegative numbers with no internal zeros.
3. Construct a Lorentzian polynomial which is not stable.
4. Show that the elementary symmetric polynomial $e_{d, n}$ can be written as $\operatorname{vol}\left(x_{1} K_{1}+\ldots+x_{n} K_{n}\right)$ for some convex bodies K_{i} if and only if $d \leq 1$ or $n-d \leq 1$.
