I. Some old graph theory, with a logic perspective.

Chordal graphs

Graphs without induced cycles of length ≥ 4.

Chordal graphs

Graphs without induced cycles of length ≥ 4.
$\Leftrightarrow \exists$ labeling such that...

Chordal graphs

Graphs without induced cycles of length ≥ 4.
$\Leftrightarrow \exists$ labeling such that... for all $a<b<c$,

$$
a c, b c \in G \Longrightarrow a b \in G .
$$

Chordal graphs

Graphs without induced cycles of length ≥ 4.
$\Leftrightarrow \exists$ labeling such that... for all $a<b<c$,

$$
a c, b c \in G \Longrightarrow a b \in G
$$

Chordal graphs

Graphs without induced cycles of length ≥ 4.
$\Leftrightarrow \exists$ labeling such that... for all $a<b<c$,

$$
a c, b c \in G \Longrightarrow a b \in G
$$

Chordal graphs

Graphs without induced cycles of length ≥ 4.
$\Leftrightarrow \exists$ labeling such that... for all $a<b<c$,

$$
a c, b c \in G \Longrightarrow a b \in G .
$$

$" \Leftarrow$ ": Pick any subcycle of length ≥ 4.

Chordal graphs

Graphs without induced cycles of length ≥ 4.
$\Leftrightarrow \exists$ labeling such that... for all $a<b<c$,

$$
a c, b c \in G \Longrightarrow a b \in G .
$$

" \Leftarrow ": Pick any subcycle of length ≥ 4. Call c the highest label in the cycle.

Chordal graphs

Graphs without induced cycles of length ≥ 4.
$\Leftrightarrow \exists$ labeling such that... for all $a<b<c$,

$$
a c, b c \in G \Longrightarrow a b \in G
$$

" \Leftarrow ": Pick any subcycle of length ≥ 4. Call c the highest label in the cycle. Let a, b be the label of its neighbors in the cycle. Wlog $a<b$.

Chordal graphs

Graphs without induced cycles of length ≥ 4.
$\Leftrightarrow \exists$ labeling such that... for all $a<b<c$,

$$
a c, b c \in G \Longrightarrow a b \in G
$$

" \Leftarrow ": Pick any subcycle of length ≥ 4. Call c the highest label in the cycle. Let a, b be the label of its neighbors in the cycle. Wlog $a<b$. But then the graph must contain the chord $a b$. $" \Rightarrow$ ":

Chordal graphs

Graphs without induced cycles of length ≥ 4.
$\Leftrightarrow \exists$ labeling such that... for all $a<b<c$,

$$
a c, b c \in G \Longrightarrow a b \in G
$$

" \Leftarrow ": Pick any subcycle of length ≥ 4. Call c the highest label in the cycle. Let a, b be the label of its neighbors in the cycle. Wlog $a<b$. But then the graph must contain the chord $a b$.
" \Rightarrow ": By Dirac's theorem, any graph without induced cycles of length ≥ 4 has a simplicial vertex, i.e. a vertex such that any two of its neighbors are connected by an edge.

Chordal graphs

Graphs without induced cycles of length ≥ 4.
$\Leftrightarrow \exists$ labeling such that... for all $a<b<c$,

$$
a c, b c \in G \Longrightarrow a b \in G
$$

" \Leftarrow ": Pick any subcycle of length ≥ 4. Call c the highest label in the cycle. Let a, b be the label of its neighbors in the cycle. Wlog $a<b$. But then the graph must contain the chord $a b$.
" \Rightarrow ": By Dirac's theorem, any graph without induced cycles of length ≥ 4 has a simplicial vertex, i.e. a vertex such that any two of its neighbors are connected by an edge. Label it by n.

Chordal graphs

Graphs without induced cycles of length ≥ 4.
$\Leftrightarrow \exists$ labeling such that... for all $a<b<c$,

$$
a c, b c \in G \Longrightarrow a b \in G
$$

" \Leftarrow ": Pick any subcycle of length ≥ 4. Call c the highest label in the cycle. Let a, b be the label of its neighbors in the cycle. Wlog $a<b$. But then the graph must contain the chord $a b$.
" \Rightarrow ": By Dirac's theorem, any graph without induced cycles of length ≥ 4 has a simplicial vertex, i.e. a vertex such that any two of its neighbors are connected by an edge. Label it by n. Now $G-n$ is chordal, so induct. \square

Chordal graphs

Graphs without induced cycles of length ≥ 4.
$\Leftrightarrow \exists$ labeling such that... for all $a<b<c$,

$$
a c, b c \in G \Longrightarrow a b \in G .
$$

Via Dirac's theorem, chordal graphs can be characterized as the graphs that are either complete, or can be obtained recursively by joining two smaller chordal graphs whose intersection is complete.

Chordal graphs

Graphs without induced cycles of length ≥ 4.
$\Leftrightarrow \exists$ labeling such that... for all $a<b<c$,

$$
a c, b c \in G \Longrightarrow a b \in G
$$

Via Dirac's theorem, chordal graphs can be characterized as the graphs that are either complete, or can be obtained recursively by joining two smaller chordal graphs whose intersection is complete. It follows that chordal graphs can also be characterized as intersection graphs of some subtrees of some tree.

Weakly-closed (aka co-comparability) graphs

Weakly-closed (aka co-comparability) graphs

Intersection graphs of curves between two horizontal lines.
$\Leftrightarrow \exists$ labeling such that...

Weakly-closed (aka co-comparability) graphs

Intersection graphs of curves between two horizontal lines.
$\Leftrightarrow \exists$ labeling such that... for all $a<b<c$,

$$
a c \in G \Longrightarrow a b \in G \text { or } b c \in G .
$$

Weakly-closed (aka co-comparability) graphs

Intersection graphs of curves between two horizontal lines.
$\Leftrightarrow \exists$ labeling such that... for all $a<b<c$,

$$
a c \in G \Longrightarrow a b \in G \text { or } b c \in G .
$$

Weakly-closed (aka co-comparability) graphs

Intersection graphs of curves between two horizontal lines.
$\Leftrightarrow \exists$ labeling such that... for all $a<b<c$,

$$
a c \in G \Longrightarrow a b \in G \text { or } b c \in G .
$$

" \Rightarrow ": Label curves left-to-right as they touch the bottom line. If curve 1 intersects curve 3, one of them must go across curve 2. $" \Leftarrow$: By induction, $G-\{n\}$ is intersection graph of $n-1$ curves between horizontal lines. Draw the last curve, and cross exactly those curves i such that $[i, n]$ is an edge of G. \square

Weakly-closed (aka co-comparability) graphs

Intersection graphs of curves between two horizontal lines.
$\Leftrightarrow \exists$ labeling such that... for all $a<b<c$,

$$
a c \in G \Longrightarrow a b \in G \text { or } b c \in G .
$$

" \Rightarrow ": Label curves left-to-right as they touch the bottom line. If curve 1 intersects curve 3, one of them must go across curve 2. $" \Leftarrow$: By induction, $G-\{n\}$ is intersection graph of $n-1$ curves between horizontal lines. Draw the last curve, and cross exactly those curves i such that $[i, n]$ is an edge of G. \square

Weakly-closed (aka co-comparability) graphs

Intersection graphs of curves between two horizontal lines.
$\Leftrightarrow \exists$ labeling such that... for all $a<b<c$,

$$
a c \in G \Longrightarrow a b \in G \text { or } b c \in G .
$$

" \Rightarrow ": Label curves left-to-right as they touch the bottom line. If curve 1 intersects curve 3, one of them must go across curve 2. $" \Leftarrow$: By induction, $G-\{n\}$ is intersection graph of $n-1$ curves between horizontal lines. Draw the last curve, and cross exactly those curves i such that $[i, n]$ is an edge of G. \square
Complements are comparability graphs or poset drawings:

$$
a b \in \bar{G} \text { and } b c \in \bar{G} \Longrightarrow a c \in \bar{G}
$$

Weakly-closed (aka co-comparability) graphs

Intersection graphs of curves between two horizontal lines.
$\Leftrightarrow \exists$ labeling such that... for all $a<b<c$,

$$
a c \in G \Longrightarrow a b \in G \text { or } b c \in G .
$$

" \Rightarrow ": Label curves left-to-right as they touch the bottom line. If curve 1 intersects curve 3, one of them must go across curve 2. $" \Leftarrow$: By induction, $G-\{n\}$ is intersection graph of $n-1$ curves between horizontal lines. Draw the last curve, and cross exactly those curves i such that $[i, n]$ is an edge of G. \square
Complements are comparability graphs or poset drawings:

$$
a b \in \bar{G} \text { and } b c \in \bar{G} \Longrightarrow a c \in \bar{G}
$$

Weakly-closed (aka co-comparability) graphs

Intersection graphs of curves between two horizontal lines.
$\Leftrightarrow \exists$ labeling such that... for all $a<b<c$,

$$
a c \in G \Longrightarrow a b \in G \text { or } b c \in G .
$$

Fact: Weakly-closed graphs are "almost chordal", in the sense that they cannot contain induced cycles of length 5 or more.

Weakly-closed (aka co-comparability) graphs

Intersection graphs of curves between two horizontal lines.
$\Leftrightarrow \exists$ labeling such that... for all $a<b<c$,

$$
a c \in G \Longrightarrow a b \in G \text { or } b c \in G .
$$

Fact: Weakly-closed graphs are "almost chordal", in the sense that they cannot contain induced cycles of length 5 or more.
Proof by contradiction: suppose $a_{n-1}, a_{n}, a_{1}, a_{2}, a_{3}$ are distinct and consecutive in an induced cycle, with a_{1} smallest. Then:

Weakly-closed (aka co-comparability) graphs

Intersection graphs of curves between two horizontal lines.
$\Leftrightarrow \exists$ labeling such that... for all $a<b<c$,

$$
a c \in G \Longrightarrow a b \in G \text { or } b c \in G .
$$

Fact: Weakly-closed graphs are "almost chordal", in the sense that they cannot contain induced cycles of length 5 or more.
Proof by contradiction: suppose $a_{n-1}, a_{n}, a_{1}, a_{2}, a_{3}$ are distinct and consecutive in an induced cycle, with a_{1} smallest. Then:
(i) $a_{3}>a_{n}$;

Weakly-closed (aka co-comparability) graphs

Intersection graphs of curves between two horizontal lines.
$\Leftrightarrow \exists$ labeling such that... for all $a<b<c$,

$$
a c \in G \Longrightarrow a b \in G \text { or } b c \in G .
$$

Fact: Weakly-closed graphs are "almost chordal", in the sense that they cannot contain induced cycles of length 5 or more.
Proof by contradiction: suppose $a_{n-1}, a_{n}, a_{1}, a_{2}, a_{3}$ are distinct and consecutive in an induced cycle, with a_{1} smallest. Then:
(i) $a_{3}>a_{n}$; (or else $a_{1}<a_{3}<a_{n}$ violates the condition)
(ii) $a_{2}<a_{n-1}$;

Weakly-closed (aka co-comparability) graphs

Intersection graphs of curves between two horizontal lines.
$\Leftrightarrow \exists$ labeling such that... for all $a<b<c$,

$$
a c \in G \Longrightarrow a b \in G \text { or } b c \in G .
$$

Fact: Weakly-closed graphs are "almost chordal", in the sense that they cannot contain induced cycles of length 5 or more.
Proof by contradiction: suppose $a_{n-1}, a_{n}, a_{1}, a_{2}, a_{3}$ are distinct and consecutive in an induced cycle, with a_{1} smallest. Then:
(i) $a_{3}>a_{n}$; (or else $a_{1}<a_{3}<a_{n}$ violates the condition)
(ii) $a_{2}<a_{n-1}$; (or else $a_{1}<a_{n-1}<a_{2}$ violates)
(iii) if $a_{2}<a_{n}$, then by (i) $a_{2}<a_{n}<a_{3}$ violates;

Weakly-closed (aka co-comparability) graphs

Intersection graphs of curves between two horizontal lines.
$\Leftrightarrow \exists$ labeling such that... for all $a<b<c$,

$$
a c \in G \Longrightarrow a b \in G \text { or } b c \in G .
$$

Fact: Weakly-closed graphs are "almost chordal", in the sense that they cannot contain induced cycles of length 5 or more.
Proof by contradiction: suppose $a_{n-1}, a_{n}, a_{1}, a_{2}, a_{3}$ are distinct and consecutive in an induced cycle, with a_{1} smallest. Then:
(i) $a_{3}>a_{n}$; (or else $a_{1}<a_{3}<a_{n}$ violates the condition)
(ii) $a_{2}<a_{n-1}$; (or else $a_{1}<a_{n-1}<a_{2}$ violates)
(iii) if $a_{2}<a_{n}$, then by (i) $a_{2}<a_{n}<a_{3}$ violates; if $a_{2}>a_{n}$, then by (ii) $a_{n}<a_{2}<a_{3}$ violates.

Weakly-closed (aka co-comparability) graphs

Intersection graphs of curves between two horizontal lines.
$\Leftrightarrow \exists$ labeling such that... for all $a<b<c$,

$$
a c \in G \Longrightarrow a b \in G \text { or } b c \in G .
$$

Fact: Weakly-closed graphs are "almost chordal", in the sense that they cannot contain induced cycles of length 5 or more.
Proof by contradiction: suppose $a_{n-1}, a_{n}, a_{1}, a_{2}, a_{3}$ are distinct and consecutive in an induced cycle, with a_{1} smallest. Then:
(i) $a_{3}>a_{n}$; (or else $a_{1}<a_{3}<a_{n}$ violates the condition)
(ii) $a_{2}<a_{n-1}$; (or else $a_{1}<a_{n-1}<a_{2}$ violates)
(iii) if $a_{2}<a_{n}$, then by (i) $a_{2}<a_{n}<a_{3}$ violates; if $a_{2}>a_{n}$, then by (ii) $a_{n}<a_{2}<a_{3}$ violates. A contradiction either way. \square

Interval graphs

Interval graphs

Intersection graphs of open intervals in \mathbb{R}.

Interval graphs

Intersection graphs of open intervals in \mathbb{R}.
$\Leftrightarrow \exists$ labeling such that...

Interval graphs

Intersection graphs of open intervals in \mathbb{R}.
$\Leftrightarrow \exists$ labeling such that... for all $a<b<c$,

$$
a c \in G \Longrightarrow a b \in G
$$

Interval graphs

Intersection graphs of open intervals in \mathbb{R}.
$\Leftrightarrow \exists$ labeling such that... for all $a<b<c$,

$$
a c \in G \Longrightarrow a b \in G
$$

Interval graphs

Intersection graphs of open intervals in \mathbb{R}.
$\Leftrightarrow \exists$ labeling such that... for all $a<b<c$,

$$
a c \in G \Longrightarrow a b \in G
$$

Interval graphs

Intersection graphs of open intervals in \mathbb{R}.
$\Leftrightarrow \exists$ labeling such that... for all $a<b<c$,

$$
a c \in G \Longrightarrow a b \in G
$$

' \Rightarrow '. Swipe the real line left-to-right, label intervals as you encounter them ($=$ order them by leftmost endpoint).

Interval graphs

Intersection graphs of open intervals in \mathbb{R}.
$\Leftrightarrow \exists$ labeling such that... for all $a<b<c$,

$$
a c \in G \Longrightarrow a b \in G
$$

' \Rightarrow '. Swipe the real line left-to-right, label intervals as you encounter them ($=$ order them by leftmost endpoint).

Interval graphs

Intersection graphs of open intervals in \mathbb{R}.
$\Leftrightarrow \exists$ labeling such that... for all $a<b<c$,

$$
a c \in G \Longrightarrow a b \in G
$$

' \Rightarrow '. Swipe the real line left-to-right, label intervals as you encounter them ($=$ order them by leftmost endpoint).

' \Leftarrow '. By induction, $G-\{n\}$ is intersection graph of $n-1$ intervals.

Interval graphs

Intersection graphs of open intervals in \mathbb{R}.
$\Leftrightarrow \exists$ labeling such that... for all $a<b<c$,

$$
a c \in G \Longrightarrow a b \in G
$$

' \Rightarrow '. Swipe the real line left-to-right, label intervals as you encounter them ($=$ order them by leftmost endpoint).

' \Leftarrow '. By induction, $G-\{n\}$ is intersection graph of $n-1$ intervals.
Figure out how to place last interval. \square

Interval graphs

Intersection graphs of open intervals in \mathbb{R}.
$\Leftrightarrow \exists$ labeling such that... for all $a<b<c$,

$$
a c \in G \Longrightarrow a b \in G
$$

' \Rightarrow '. Swipe the real line left-to-right, label intervals as you encounter them ($=$ order them by leftmost endpoint).

' \Leftarrow '. By induction, $G-\{n\}$ is intersection graph of $n-1$ intervals.
Figure out how to place last interval. \square

Unit-Interval graphs

Unit-Interval graphs

Intersection graphs of open intervals of length 1 in \mathbb{R}.

Unit-Interval graphs

Intersection graphs of open intervals of length 1 in \mathbb{R}.
$\Leftrightarrow \exists$ labeling such that...

Unit-Interval graphs

Intersection graphs of open intervals of length 1 in \mathbb{R}.
$\Leftrightarrow \exists$ labeling such that... for all $a<b<c$,

$$
a c \in G \Longrightarrow a b, b c \in G
$$

Unit-Interval graphs

Intersection graphs of open intervals of length 1 in \mathbb{R}.
$\Leftrightarrow \exists$ labeling such that... for all $a<b<c$,

$$
a c \in G \Longrightarrow a b, b c \in G
$$

Unit-Interval graphs

Intersection graphs of open intervals of length 1 in \mathbb{R}.
$\Leftrightarrow \exists$ labeling such that... for all $a<b<c$,

$$
a c \in G \Longrightarrow a b, b c \in G
$$

Unit-Interval graphs

Intersection graphs of open intervals of length 1 in \mathbb{R}.
$\Leftrightarrow \exists$ labeling such that... for all $a<b<c$,

$$
a c \in G \Longrightarrow a b, b c \in G .
$$

' \Rightarrow '. Swiping right-to-left, you get the reverse labeling: So also the reverse labeling satisfies the interval condition.

Unit-Interval graphs

Intersection graphs of open intervals of length 1 in \mathbb{R}.
$\Leftrightarrow \exists$ labeling such that... for all $a<b<c$,

$$
a c \in G \Longrightarrow a b, b c \in G .
$$

' \Rightarrow '. Swiping right-to-left, you get the reverse labeling: So also the reverse labeling satisfies the interval condition.

Unit-Interval graphs

Intersection graphs of open intervals of length 1 in \mathbb{R}.
$\Leftrightarrow \exists$ labeling such that... for all $a<b<c$,

$$
a c \in G \Longrightarrow a b, b c \in G .
$$

' \Rightarrow '. Swiping right-to-left, you get the reverse labeling: So also the reverse labeling satisfies the interval condition.

$' \Leftarrow$ '. By induction. \square

Unit-Interval graphs

Intersection graphs of open intervals of length 1 in \mathbb{R}.
$\Leftrightarrow \exists$ labeling such that... for all $a<b<c$,

$$
a c \in G \Longrightarrow a b, b c \in G .
$$

' \Rightarrow '. Swiping right-to-left, you get the reverse labeling: So also the reverse labeling satisfies the interval condition.

$' \Leftarrow$ '. By induction. \square

Unit-Interval graphs

Intersection graphs of open intervals of length 1 in \mathbb{R}.
$\Leftrightarrow \exists$ labeling such that... for all $a<b<c$,

$$
a c \in G \Longrightarrow a b, b c \in G .
$$

' \Rightarrow '. Swiping right-to-left, you get the reverse labeling: So also the reverse labeling satisfies the interval condition.

$' \Leftarrow$ '. By induction. \square

Unit-Interval graphs

Intersection graphs of open intervals of length 1 in \mathbb{R}.
$\Leftrightarrow \exists$ labeling such that... for all $a<b<c$,

$$
a c \in G \Longrightarrow a b, b c \in G
$$

Theorem [Bertossi 1983, HerzogEtAI 2010]
Unit-interval connected graphs are traceable.

Unit-Interval graphs

Intersection graphs of open intervals of length 1 in \mathbb{R}.
$\Leftrightarrow \exists$ labeling such that... for all $a<b<c$,

$$
a c \in G \Longrightarrow a b, b c \in G .
$$

Theorem [Bertossi 1983, HerzogEtAI 2010]
Unit-interval connected graphs are traceable.
If $H_{k} \stackrel{\text { def }}{=}[k, k+1]$, we prove by induction that $H_{k} \in G$ for all $k<n$.

Unit-Interval graphs

Intersection graphs of open intervals of length 1 in \mathbb{R}.
$\Leftrightarrow \exists$ labeling such that... for all $a<b<c$,

$$
a c \in G \Longrightarrow a b, b c \in G
$$

Theorem [Bertossi 1983, HerzogEtAI 2010]
Unit-interval connected graphs are traceable.
If $H_{k} \stackrel{\text { def }}{=}[k, k+1]$, we prove by induction that $H_{k} \in G$ for all $k<n$. $H_{1} \in G$: Since 1 is not isolated, $[1, j]$ is an edge, and so $[1,2]$. $H_{k} \in G$: Since the subgraph on the first k vertices is connected to the subgraph on the last $n-k$, there is an edge $[i, j]$ with $i \leq k$ and $j \geq k+1$. By the unit-interval condition, $[k, k+1]$ is in $G . \square$

Unit-Interval graphs

Intersection graphs of open intervals of length 1 in \mathbb{R}.
$\Leftrightarrow \exists$ labeling such that... for all $a<b<c$,

$$
a c \in G \Longrightarrow a b, b c \in G
$$

Theorem [Bertossi 1983, HerzogEtAI 2010]
Unit-interval connected graphs are traceable.
If $H_{k} \stackrel{\text { def }}{=}[k, k+1]$, we prove by induction that $H_{k} \in G$ for all $k<n$. $H_{1} \in G$: Since 1 is not isolated, $[1, j]$ is an edge, and so $[1,2]$. $H_{k} \in G$: Since the subgraph on the first k vertices is connected to the subgraph on the last $n-k$, there is an edge $[i, j]$ with $i \leq k$ and $j \geq k+1$. By the unit-interval condition, $[k, k+1]$ is in $G . \square$

Unit-Interval graphs

Intersection graphs of open intervals of length 1 in \mathbb{R}.
$\Leftrightarrow \exists$ labeling such that... for all $a<b<c$,

$$
a c \in G \Longrightarrow a b, b c \in G
$$

Theorem [Bertossi 1983, HerzogEtAI 2010]
Unit-interval connected graphs are traceable.
If $H_{k} \stackrel{\text { def }}{=}[k, k+1]$, we prove by induction that $H_{k} \in G$ for all $k<n$. $H_{1} \in G$: Since 1 is not isolated, $[1, j]$ is an edge, and so $[1,2]$. $H_{k} \in G$: Since the subgraph on the first k vertices is connected to the subgraph on the last $n-k$, there is an edge $[i, j]$ with $i \leq k$ and $j \geq k+1$. By the unit-interval condition, $[k, k+1]$ is in $G . \square$

Unit-Interval graphs

Intersection graphs of open intervals of length 1 in \mathbb{R}.
$\Leftrightarrow \exists$ labeling such that... for all $a<b<c$,

$$
a c \in G \Longrightarrow a b, b c \in G .
$$

Theorem [Chen-Chang-Chang 1997]
Unit-interval 2-connected graphs are Hamiltonian.

Unit-Interval graphs

Intersection graphs of open intervals of length 1 in \mathbb{R}.
$\Leftrightarrow \exists$ labeling such that... for all $a<b<c$,

$$
a c \in G \Longrightarrow a b, b c \in G .
$$

Theorem [Chen-Chang-Chang 1997]
Unit-interval 2-connected graphs are Hamiltonian.
The idea is to show that G contains not only all edges $[k, k+1]$ but also all edges $[k, k+2]$.

Unit-Interval graphs

Intersection graphs of open intervals of length 1 in \mathbb{R}.
$\Leftrightarrow \exists$ labeling such that... for all $a<b<c$,

$$
a c \in G \Longrightarrow a b, b c \in G
$$

Theorem [Chen-Chang-Chang 1997]
Unit-interval 2-connected graphs are Hamiltonian.
The idea is to show that G contains not only all edges $[k, k+1]$ but also all edges $[k, k+2$]. Then e.g. if $n=9, G$ contains

$$
[1,3],[3,5],[5,7],[7,9],[8,9],[6,8],[4,6],[2,4],[1,2] .
$$

Unit-Interval graphs

Intersection graphs of open intervals of length 1 in \mathbb{R}.
$\Leftrightarrow \exists$ labeling such that... for all $a<b<c$,

$$
a c \in G \Longrightarrow a b, b c \in G
$$

Theorem [Chen-Chang-Chang 1997]
Unit-interval 2-connected graphs are Hamiltonian.
The idea is to show that G contains not only all edges $[k, k+1]$ but also all edges $[k, k+2$]. Then e.g. if $n=9, G$ contains

$$
[1,3],[3,5],[5,7],[7,9],[8,9],[6,8],[4,6],[2,4],[1,2] .
$$

Unit-Interval graphs

Intersection graphs of open intervals of length 1 in \mathbb{R}.
$\Leftrightarrow \exists$ labeling such that... for all $a<b<c$,

$$
a c \in G \Longrightarrow a b, b c \in G
$$

Theorem [Chen-Chang-Chang 1997]
Unit-interval 2-connected graphs are Hamiltonian.
The idea is to show that G contains not only all edges $[k, k+1]$ but also all edges $[k, k+2$]. Then e.g. if $n=9, G$ contains

$$
[1,3],[3,5],[5,7],[7,9],[8,9],[6,8],[4,6],[2,4],[1,2] .
$$

Cluster graphs

Cluster graphs

Disjoint unions of cliques.

Cluster graphs

Disjoint unions of cliques.
$\Leftrightarrow \exists$ labeling such that...

Cluster graphs

Disjoint unions of cliques.
$\Leftrightarrow \exists$ labeling such that... for all $a<b<c$,

$$
a c \in G \Longleftrightarrow a b, b c \in G
$$

Cluster graphs

Disjoint unions of cliques.
$\Leftrightarrow \exists$ labeling such that... for all $a<b<c$,

$$
a c \in G \Longleftrightarrow a b, b c \in G
$$

Cluster graphs

Disjoint unions of cliques.
$\Leftrightarrow \exists$ labeling such that... for all $a<b<c$,

$$
a c \in G \Longleftrightarrow a b, b c \in G .
$$

Cluster graphs are exactly the " P_{3}-free graphs", i.e. the graphs without any induced three-vertex path.

Long paths aren't cluster, though they are unit-interval.

Summary

Summary

CHORDAL: \exists labeling such that...

Summary

CHORDAL: \exists labeling such that... for all $a<b<c$,

$$
a c, b c \in G \Longrightarrow a b \in G .
$$

Summary

$$
\begin{aligned}
& \text { CHORDAL: } \exists \text { labeling such that... for all } a<b<c, \\
& \qquad a c, b c \in G \Longrightarrow a b \in G .
\end{aligned}
$$

WEAKLY-CLOSED: \exists labeling such that...

Summary
CHORDAL: \exists labeling such that... for all $a<b<c$,

$$
a c, b c \in G \Longrightarrow a b \in G
$$

WEAKLY-CLOSED: \exists labeling such that... for all $a<b<c$,

$$
a c \in G \Longrightarrow a b \in G \text { or } b c \in G
$$

Summary

CHORDAL: \exists labeling such that... for all $a<b<c$,

$$
a c, b c \in G \Longrightarrow a b \in G .
$$

WEAKLY-CLOSED: \exists labeling such that... for all $a<b<c$,

$$
a c \in G \Longrightarrow a b \in G \text { or } b c \in G .
$$

INTERVAL: \exists labeling such that...

Summary

CHORDAL: \exists labeling such that... for all $a<b<c$,

$$
a c, b c \in G \Longrightarrow a b \in G
$$

WEAKLY-CLOSED: \exists labeling such that... for all $a<b<c$,

$$
a c \in G \Longrightarrow a b \in G \text { or } b c \in G
$$

INTERVAL: \exists labeling such that... for all $a<b<c$,

$$
a c \in G \Longrightarrow a b \in G
$$

CHORDAL: \exists labeling such that... for all $a<b<c$,

$$
a c, b c \in G \Longrightarrow a b \in G .
$$

WEAKLY-CLOSED: \exists labeling such that... for all $a<b<c$,

$$
a c \in G \Longrightarrow a b \in G \text { or } b c \in G
$$

INTERVAL: \exists labeling such that... for all $a<b<c$,

$$
a c \in G \Longrightarrow a b \in G
$$

UNIT INTERVAL: \exists labeling such that...

CHORDAL: \exists labeling such that... for all $a<b<c$,

$$
a c, b c \in G \Longrightarrow a b \in G
$$

WEAKLY-CLOSED: \exists labeling such that... for all $a<b<c$,

$$
a c \in G \Longrightarrow a b \in G \text { or } b c \in G .
$$

INTERVAL: \exists labeling such that... for all $a<b<c$,

$$
a c \in G \Longrightarrow a b \in G
$$

UNIT INTERVAL: \exists labeling such that... for all $a<b<c$,

$$
a c \in G \Longrightarrow a b, b c \in G .
$$

Summary
CHORDAL: \exists labeling such that... for all $a<b<c$,

$$
a c, b c \in G \Longrightarrow a b \in G .
$$

WEAKLY-CLOSED: \exists labeling such that... for all $a<b<c$,

$$
a c \in G \Longrightarrow a b \in G \text { or } b c \in G
$$

INTERVAL: \exists labeling such that... for all $a<b<c$,

$$
a c \in G \Longrightarrow a b \in G
$$

UNIT INTERVAL: \exists labeling such that... for all $a<b<c$,

$$
a c \in G \Longrightarrow a b, b c \in G
$$

CLUSTER: \exists labeling such that...

Summary
CHORDAL: \exists labeling such that... for all $a<b<c$,

$$
a c, b c \in G \Longrightarrow a b \in G .
$$

WEAKLY-CLOSED: \exists labeling such that... for all $a<b<c$,

$$
a c \in G \Longrightarrow a b \in G \text { or } b c \in G
$$

INTERVAL: \exists labeling such that... for all $a<b<c$,

$$
a c \in G \Longrightarrow a b \in G
$$

UNIT INTERVAL: \exists labeling such that... for all $a<b<c$,

$$
a c \in G \Longrightarrow a b, b c \in G
$$

CLUSTER: \exists labeling such that... for all $a<b<c$,

$$
a c \in G \Longleftrightarrow a b, b c \in G
$$

Summary
CHORDAL: \exists labeling such that... for all $a<b<c$,

$$
a c, b c \in G \Longrightarrow a b \in G
$$

WEAKLY-CLOSED: \exists labeling such that... for all $a<b<c$,

$$
a c \in G \Longrightarrow a b \in G \text { or } b c \in G
$$

INTERVAL: \exists labeling such that... for all $a<b<c$,

$$
a c \in G \Longrightarrow a b \in G
$$

UNIT INTERVAL: \exists labeling such that... for all $a<b<c$,

$$
a c \in G \Longrightarrow a b, b c \in G .
$$

CLUSTER: \exists labeling such that... for all $a<b<c$,

$$
a c \in G \Longleftrightarrow a b, b c \in G
$$

Obviously, $\mathrm{Cl} \Longrightarrow$ UInt \Longrightarrow Int \Longrightarrow (Chordal \& WClosed).

Summary
CHORDAL: \exists labeling such that... for all $a<b<c$,

$$
a c, b c \in G \Longrightarrow a b \in G .
$$

WEAKLY-CLOSED: \exists labeling such that... for all $a<b<c$,

$$
a c \in G \Longrightarrow a b \in G \text { or } b c \in G
$$

INTERVAL: \exists labeling such that... for all $a<b<c$,

$$
a c \in G \Longrightarrow a b \in G
$$

UNIT INTERVAL: \exists labeling such that... for all $a<b<c$,

$$
a c \in G \Longrightarrow a b, b c \in G .
$$

CLUSTER: \exists labeling such that... for all $a<b<c$,

$$
a c \in G \Longleftrightarrow a b, b c \in G
$$

Obviously, $\mathrm{Cl} \Longrightarrow$ UInt \Longrightarrow Int \Longrightarrow (Chordal \& WClosed). Converse of the last implication? Is it trivial?

Summary
CHORDAL: \exists labeling such that... for all $a<b<c$,

$$
a c, b c \in G \Longrightarrow a b \in G .
$$

WEAKLY-CLOSED: \exists labeling such that... for all $a<b<c$,

$$
a c \in G \Longrightarrow a b \in G \text { or } b c \in G
$$

INTERVAL: \exists labeling such that... for all $a<b<c$,

$$
a c \in G \Longrightarrow a b \in G
$$

UNIT INTERVAL: \exists labeling such that... for all $a<b<c$,

$$
a c \in G \Longrightarrow a b, b c \in G .
$$

CLUSTER: \exists labeling such that... for all $a<b<c$,

$$
a c \in G \Longleftrightarrow a b, b c \in G
$$

Obviously, $\mathrm{Cl} \Longrightarrow$ UInt \Longrightarrow Int \Longrightarrow (Chordal \& WClosed). Converse of the last implication? Is it trivial?

Summary
CHORDAL: \exists labeling such that... for all $a<b<c$,

$$
a c, b c \in G \Longrightarrow a b \in G .
$$

WEAKLY-CLOSED: \exists labeling such that... for all $a<b<c$,

$$
a c \in G \Longrightarrow a b \in G \text { or } b c \in G
$$

INTERVAL: \exists labeling such that... for all $a<b<c$,

$$
a c \in G \Longrightarrow a b \in G
$$

UNIT INTERVAL: \exists labeling such that... for all $a<b<c$,

$$
a c \in G \Longrightarrow a b, b c \in G .
$$

CLUSTER: \exists labeling such that... for all $a<b<c$,

$$
a c \in G \Longleftrightarrow a b, b c \in G
$$

Obviously, $\mathrm{Cl} \Longrightarrow$ UInt \Longrightarrow Int \Longrightarrow (Chordal \& WClosed). Converse of the last implication? Is it trivial?

Gilmore-Hoffman's theorem

Gilmore-Hoffman's theorem

Theorem (Gilmore-Hoffman, 1964)
The following are equivalent:
(1) the maximal cliques of G can be ordered so that, for every $v \in G$, the maximal cliques containing v occur consecutively;

Gilmore-Hoffman's theorem

Theorem (Gilmore-Hoffman, 1964)
The following are equivalent:
(1) the maximal cliques of G can be ordered so that, for every $v \in G$, the maximal cliques containing v occur consecutively;
(2) if A is the incidence matrix of (maximal cliques vs. vertices), then A is an interval matrix, i,e. up to permuting rows/columns, every column has its 1 s in consecutive rows;
(3) G is an interval graph;

Gilmore-Hoffman's theorem

Theorem (Gilmore-Hoffman, 1964)
The following are equivalent:
(1) the maximal cliques of G can be ordered so that, for every $v \in G$, the maximal cliques containing v occur consecutively;
(2) if A is the incidence matrix of (maximal cliques vs. vertices), then A is an interval matrix, i,e. up to permuting rows/columns, every column has its 1 s in consecutive rows;
(3) G is an interval graph;
(9) G is chordal and co-comparability;

Gilmore-Hoffman's theorem

Theorem (Gilmore-Hoffman, 1964)
The following are equivalent:
(1) the maximal cliques of G can be ordered so that, for every $v \in G$, the maximal cliques containing v occur consecutively;
(2) if A is the incidence matrix of (maximal cliques vs. vertices), then A is an interval matrix, i,e. up to permuting rows/columns, every column has its 1 s in consecutive rows;
(3) G is an interval graph;
(9) G is chordal and co-comparability;
(3) G is co-comparability and has no induced 4-cycle.

Gilmore-Hoffman's theorem

Theorem (Gilmore-Hoffman, 1964)
The following are equivalent:
(1) the maximal cliques of G can be ordered so that, for every $v \in G$, the maximal cliques containing v occur consecutively;
(2) if A is the incidence matrix of (maximal cliques vs. vertices), then A is an interval matrix, i,e. up to permuting rows/columns, every column has its 1 s in consecutive rows;
(3) G is an interval graph;
(9) G is chordal and co-comparability;
(5) G is co-comparability and has no induced 4-cycle.

For LP lovers: interval matrices $A \in\{0,1\}^{m \times n}$ are totally unimodular (by induction on no. of rows).

Gilmore-Hoffman's theorem

Theorem (Gilmore-Hoffman, 1964)

The following are equivalent:
(1) the maximal cliques of G can be ordered so that, for every $v \in G$, the maximal cliques containing v occur consecutively;
(2) if A is the incidence matrix of (maximal cliques vs. vertices), then A is an interval matrix, i,e. up to permuting rows/columns, every column has its 1 s in consecutive rows;
(3) G is an interval graph;
(9) G is chordal and co-comparability;
(5) G is co-comparability and has no induced 4-cycle.

For LP lovers: interval matrices $A \in\{0,1\}^{m \times n}$ are totally unimodular (by induction on no. of rows). So the polytope

$$
\left\{\mathbf{x} \in \mathbb{R}^{n} \text { such that } A \mathbf{x}=\mathbf{b}, \mathbf{x} \geq \mathbf{0}\right\}
$$

has all vertices with all cooordinates in \mathbb{N}, for any \mathbf{b} in \mathbb{Z}^{m}.

Herzog-Hibi-Hreinsdottir-Rauh-Kahle (2009) introduced the following correspondence:
Graph G with e edges, n vertices \rightsquigarrow binomial edge ideal

$$
\left(x_{i} y_{j}-x_{j} y_{i}\right): i j \text { is an edge in } G
$$

with e generators in a polynomial ring of $2 n$ variables.
Theorem (Herzog et al, 2009)

1. For any graph, this ideal is radical.

A new algebraic perspective:

Herzog-Hibi-Hreinsdottir-Rauh-Kahle (2009) introduced the following correspondence:
Graph G with e edges, n vertices \rightsquigarrow binomial edge ideal

$$
\left(x_{i} y_{j}-x_{j} y_{i}\right): i j \text { is an edge in } G
$$

with e generators in a polynomial ring of $2 n$ variables.
Theorem (Herzog et al, 2009)

1. For any graph, this ideal is radical.
2. A graph is unit-interval \Longleftrightarrow the generators of its BEI form a (squarefree) Gröbner basis.

And several exciting developments, e.g. Matsuda (2017) showed that if a graph is weakly-closed, then the quotient by its BEI is F-pure in characteristic p; Seccia in her thesis (2022) proved that a graph is weakly-closed if and only if its BEI is a Knutson ideal.

Goals for a generalization:

- Hierarchy (with examples, hopefully simple and meaningful, that show strictness for all d)?

Goals for a generalization:

- Hierarchy (with examples, hopefully simple and meaningful, that show strictness for all d)?
- Relation with Hamiltonian paths?

Goals for a generalization:

- Hierarchy (with examples, hopefully simple and meaningful, that show strictness for all d)?
- Relation with Hamiltonian paths?
- Algebraic interpretation, via determinantal facet ideals?
II. Simplicial complexes.

Conventions

We write d-faces by listing vertices in increasing order, i.e. if we write $F=\left[a_{0}, a_{1}, \cdots, a_{d}\right]$, we mean $a_{0}<a_{1}<\ldots<a_{d}$. So $\min F=a_{0}$ and $\max F=a_{d}$.

Conventions

We write d-faces by listing vertices in increasing order, i.e. if we write $F=\left[a_{0}, a_{1}, \cdots, a_{d}\right]$, we mean $a_{0}<a_{1}<\ldots<a_{d}$. So $\min F=a_{0}$ and $\max F=a_{d}$.

The 'gap' of F is $a_{d}-a_{0}-d$ (it's the number of integers between a_{0} and a_{d} missing from F).

Conventions

We write d-faces by listing vertices in increasing order, i.e. if we write $F=\left[a_{0}, a_{1}, \cdots, a_{d}\right]$, we mean $a_{0}<a_{1}<\ldots<a_{d}$. So $\min F=a_{0}$ and $\max F=a_{d}$.

The 'gap' of F is $a_{d}-a_{0}-d$ (it's the number of integers between a_{0} and a_{d} missing from F).
$H_{i} \stackrel{\text { def }}{=}[i, i+1, i+2, \ldots, i+d]$.

Conventions

We write d-faces by listing vertices in increasing order, i.e. if we write $F=\left[a_{0}, a_{1}, \cdots, a_{d}\right]$, we mean $a_{0}<a_{1}<\ldots<a_{d}$. So $\min F=a_{0}$ and $\max F=a_{d}$.

The 'gap' of F is $a_{d}-a_{0}-d$ (it's the number of integers between a_{0} and a_{d} missing from F).
$H_{i} \stackrel{\text { def }}{=}[i, i+1, i+2, \ldots, i+d]$. (Modulo n.)

Conventions

We write d-faces by listing vertices in increasing order, i.e. if we write $F=\left[a_{0}, a_{1}, \cdots, a_{d}\right]$, we mean $a_{0}<a_{1}<\ldots<a_{d}$. So $\min F=a_{0}$ and $\max F=a_{d}$.

The 'gap' of F is $a_{d}-a_{0}-d$ (it's the number of integers between a_{0} and a_{d} missing from F).
$H_{i} \stackrel{\text { def }}{=}[i, i+1, i+2, \ldots, i+d]$. (Modulo n.)
Σ_{n}^{d} is the d-skeleton on the $(n-1)$-dimensional simplex with vertex set $\{1, \ldots, n\}$.

Chordal complexes

Emtander's 2010 definition:
\exists labeling such that for each d-face $F=\left[a_{0}, a_{1}, \cdots, a_{d}\right] \in \Delta \ldots$ for any facet G of Δ with $\max F=\max G$, the complex Δ contains the full d-skeleton of the simplex on the vertex set $F \cup G$.

Chordal complexes

Emtander's 2010 definition:
\exists labeling such that for each d-face $F=\left[a_{0}, a_{1}, \cdots, a_{d}\right] \in \Delta \ldots$
for any facet G of Δ with $\max F=\max G$, the complex Δ contains the full d-skeleton of the simplex on the vertex set $F \cup G$.

Chordal complexes

Emtander's 2010 definition:
\exists labeling such that for each d-face $F=\left[a_{0}, a_{1}, \cdots, a_{d}\right] \in \Delta \ldots$
for any facet G of Δ with $\max F=\max G$, the complex Δ contains the full d-skeleton of the simplex on the vertex set $F \cup G$.

Caveat: This is not closed under taking the k - skeleton.

Chordal complexes

Emtander's 2010 definition:
\exists labeling such that for each d-face $F=\left[a_{0}, a_{1}, \cdots, a_{d}\right] \in \Delta \ldots$ for any facet G of Δ with $\max F=\max G$, the complex Δ contains the full d-skeleton of the simplex on the vertex set $F \cup G$.

Caveat: This is not closed under taking the k - skeleton. E.g. the 2-complex with $2 t$ vertices and t triangles
$C_{t}=[1,2,3],[3,4,5],[5,6,7], \ldots,[2 t-3,2 t-2,2 t-1],[1,2 t-1,2 t]$

Chordal complexes

Emtander's 2010 definition:
\exists labeling such that for each d-face $F=\left[a_{0}, a_{1}, \cdots, a_{d}\right] \in \Delta \ldots$ for any facet G of Δ with $\max F=\max G$, the complex Δ contains the full d-skeleton of the simplex on the vertex set $F \cup G$.

Caveat: This is not closed under taking the k - skeleton. E.g. the 2-complex with $2 t$ vertices and t triangles
$C_{t}=[1,2,3],[3,4,5],[5,6,7], \ldots,[2 t-3,2 t-2,2 t-1],[1,2 t-1,2 t]$ is chordal because there are no two faces with same maximum.

Chordal complexes

Emtander's 2010 definition:
\exists labeling such that for each d-face $F=\left[a_{0}, a_{1}, \cdots, a_{d}\right] \in \Delta \ldots$ for any facet G of Δ with $\max F=\max G$, the complex Δ contains the full d-skeleton of the simplex on the vertex set $F \cup G$.

Caveat: This is not closed under taking the k - skeleton. E.g. the 2-complex with $2 t$ vertices and t triangles
$C_{t}=[1,2,3],[3,4,5],[5,6,7], \ldots,[2 t-3,2 t-2,2 t-1],[1,2 t-1,2 t]$ is chordal because there are no two faces with same maximum. Deleting even-labeled vertices \rightsquigarrow a length- t (induced) cycle.

Weakly-Closed (or 'co-comparability') complexes

\exists labeling such that for each d-face $F=\left[a_{0}, a_{1}, \cdots a_{d}\right] \in \Delta \ldots$ for every integer $g \notin F$ with $a_{0}<g<a_{d}, \Delta$ contains either $g *\left[a_{0}, \ldots, a_{d-1}\right]$ or $g *\left[a_{1}, \ldots, a_{d}\right]$.

Weakly-Closed (or 'co-comparability') complexes

\exists labeling such that for each d-face $F=\left[a_{0}, a_{1}, \cdots a_{d}\right] \in \Delta \ldots$ for every integer $g \notin F$ with $a_{0}<g<a_{d}, \Delta$ contains either $g *\left[a_{0}, \ldots, a_{d-1}\right]$ or $g *\left[a_{1}, \ldots, a_{d}\right]$.

Weakly-Closed (or 'co-comparability') complexes

\exists labeling such that for each d-face $F=\left[a_{0}, a_{1}, \cdots a_{d}\right] \in \Delta \ldots$ for every integer $g \notin F$ with $a_{0}<g<a_{d}, \Delta$ contains either $g *\left[a_{0}, \ldots, a_{d-1}\right]$ or $g *\left[a_{1}, \ldots, a_{d}\right]$.

Weakly-Closed (or 'co-comparability') complexes

\exists labeling such that for each d-face $F=\left[a_{0}, a_{1}, \cdots a_{d}\right] \in \Delta \ldots$ for every integer $g \notin F$ with $a_{0}<g<a_{d}, \Delta$ contains either $g *\left[a_{0}, \ldots, a_{d-1}\right]$ or $g *\left[a_{1}, \ldots, a_{d}\right]$.

Generalizes co-comparability graphs and passes to the 1 -skeleton.

Weakly-Closed (or 'co-comparability') complexes

\exists labeling such that for each d-face $F=\left[a_{0}, a_{1}, \cdots a_{d}\right] \in \Delta \ldots$ for every integer $g \notin F$ with $a_{0}<g<a_{d}, \Delta$ contains either $g *\left[a_{0}, \ldots, a_{d-1}\right]$ or $g *\left[a_{1}, \ldots, a_{d}\right]$.

Generalizes co-comparability graphs and passes to the 1 -skeleton.
Theorem (BB-Seccia-Varbaro 21+)
For $n \geq 2 d+3$, the d-complex of facets H_{1}, \ldots, H_{n} is neither chordal nor WC.

Weakly-Closed (or 'co-comparability') complexes

\exists labeling such that for each d-face $F=\left[a_{0}, a_{1}, \cdots a_{d}\right] \in \Delta \ldots$ for every integer $g \notin F$ with $a_{0}<g<a_{d}, \Delta$ contains either $g *\left[a_{0}, \ldots, a_{d-1}\right]$ or $g *\left[a_{1}, \ldots, a_{d}\right]$.

Generalizes co-comparability graphs and passes to the 1 -skeleton.
Theorem (BB-Seccia-Varbaro 21+)
For $n \geq 2 d+3$, the d-complex of facets H_{1}, \ldots, H_{n} is neither chordal nor WC.
(Easy: The 1-skeleton isn't WC.

Weakly-Closed (or 'co-comparability') complexes

\exists labeling such that for each d-face $F=\left[a_{0}, a_{1}, \cdots a_{d}\right] \in \Delta \ldots$ for every integer $g \notin F$ with $a_{0}<g<a_{d}, \Delta$ contains either $g *\left[a_{0}, \ldots, a_{d-1}\right]$ or $g *\left[a_{1}, \ldots, a_{d}\right]$.

Generalizes co-comparability graphs and passes to the 1 -skeleton.
Theorem (BB-Seccia-Varbaro 21+)
For $n \geq 2 d+3$, the d-complex of facets H_{1}, \ldots, H_{n} is neither chordal nor WC.
(Easy: The 1-skeleton isn't WC. Also every vertex is in $d+1$ facets, has $2 d$ neighbors:

Weakly-Closed (or 'co-comparability') complexes

\exists labeling such that for each d-face $F=\left[a_{0}, a_{1}, \cdots a_{d}\right] \in \Delta \ldots$ for every integer $g \notin F$ with $a_{0}<g<a_{d}, \Delta$ contains either $g *\left[a_{0}, \ldots, a_{d-1}\right]$ or $g *\left[a_{1}, \ldots, a_{d}\right]$.

Generalizes co-comparability graphs and passes to the 1 -skeleton.
Theorem (BB-Seccia-Varbaro 21+)
For $n \geq 2 d+3$, the d-complex of facets H_{1}, \ldots, H_{n} is neither chordal nor WC.
(Easy: The 1-skeleton isn't WC. Also every vertex is in $d+1$ facets, has $2 d$ neighbors: If x is the vertex with highest label, chordality \Rightarrow the neighbors of x form a clique. So any neighbor of x is in $\geq\binom{ 2 d}{d}$ facets.

Weakly-Closed (or 'co-comparability') complexes

\exists labeling such that for each d-face $F=\left[a_{0}, a_{1}, \cdots a_{d}\right] \in \Delta \ldots$ for every integer $g \notin F$ with $a_{0}<g<a_{d}, \Delta$ contains either $g *\left[a_{0}, \ldots, a_{d-1}\right]$ or $g *\left[a_{1}, \ldots, a_{d}\right]$.

Generalizes co-comparability graphs and passes to the 1 -skeleton.
Theorem (BB-Seccia-Varbaro 21+)
For $n \geq 2 d+3$, the d-complex of facets H_{1}, \ldots, H_{n} is neither chordal nor WC.
(Easy: The 1-skeleton isn't WC. Also every vertex is in $d+1$ facets, has $2 d$ neighbors: If x is the vertex with highest label, chordality \Rightarrow the neighbors of x form a clique. So any neighbor of x is in $\geq\binom{ 2 d}{d}$ facets. But $d+1<\binom{2 d}{d}$ for $d>1$.)

Weakly-Closed (or 'co-comparability') complexes

\exists labeling such that for each d-face $F=\left[a_{0}, a_{1}, \cdots a_{d}\right] \in \Delta \ldots$ for every integer $g \notin F$ with $a_{0}<g<a_{d}, \Delta$ contains either $g *\left[a_{0}, \ldots, a_{d-1}\right]$ or $g *\left[a_{1}, \ldots, a_{d}\right]$.

Generalizes co-comparability graphs and passes to the 1 -skeleton.
Theorem (BB-Seccia-Varbaro 21+)
For $n \geq 2 d+3$, the d-complex of facets H_{1}, \ldots, H_{n} is neither chordal nor WC.
(Easy: The 1-skeleton isn't WC. Also every vertex is in $d+1$ facets, has $2 d$ neighbors: If x is the vertex with highest label, chordality \Rightarrow the neighbors of x form a clique. So any neighbor of x is in $\geq\binom{ 2 d}{d}$ facets. But $d+1<\binom{2 d}{d}$ for $d>1$.)

Semi-Closed complexes

\exists labeling such that for each d-face $F=\left[a_{0}, a_{1}, \cdots a_{d}\right] \in \Delta \ldots$
(1) either Δ contains all d-faces $G \leq F$ with $\min G=\min F$,
(1) or Δ contains all d-faces $H \geq F$ with $\max H=\max F$.
\exists labeling such that for each d-face $F=\left[a_{0}, a_{1}, \cdots a_{d}\right] \in \Delta \ldots$
(1) either Δ contains all d-faces $G \leq F$ with $\min G=\min F$,
(1) or Δ contains all d-faces $H \geq F$ with $\max H=\max F$.

\exists labeling such that for each d-face $F=\left[a_{0}, a_{1}, \cdots a_{d}\right] \in \Delta \ldots$
(1) either Δ contains all d-faces $G \leq F$ with $\min G=\min F$,
(1) or Δ contains all d-faces $H \geq F$ with $\max H=\max F$.

\exists labeling such that for each d-face $F=\left[a_{0}, a_{1}, \cdots a_{d}\right] \in \Delta \ldots$
(1) either Δ contains all d-faces $G \leq F$ with $\min G=\min F$,
(1) or Δ contains all d-faces $H \geq F$ with $\max H=\max F$.

Implies WC; passes to the 1 -skeleton.
\exists labeling such that for each d-face $F=\left[a_{0}, a_{1}, \cdots a_{d}\right] \in \Delta \ldots$
(1) either Δ contains all d-faces $G \leq F$ with $\min G=\min F$,
(1) or Δ contains all d-faces $H \geq F$ with $\max H=\max F$.

Implies WC; passes to the 1 -skeleton.
\exists labeling such that for each d-face $F=\left[a_{0}, a_{1}, \cdots a_{d}\right] \in \Delta \ldots$
(1) either Δ contains all d-faces $G \leq F$ with $\min G=\min F$,
(1) or Δ contains all d-faces $H \geq F$ with $\max H=\max F$.

Implies WC; passes to the 1-skeleton. New for graphs?
\exists labeling such that for each d-face $F=\left[a_{0}, a_{1}, \cdots a_{d}\right] \in \Delta \ldots$
(1) either Δ contains all d-faces $G \leq F$ with $\min G=\min F$,
(1) or Δ contains all d-faces $H \geq F$ with $\max H=\max F$.

Implies WC; passes to the 1-skeleton. New for graphs? It says, if $15 \in G$, then G contains either all of $12,13,14$, or all of $25,35,45$.

Semi-Closed complexes

\exists labeling such that for each d-face $F=\left[a_{0}, a_{1}, \cdots a_{d}\right] \in \Delta \ldots$
(1) either Δ contains all d-faces $G \leq F$ with $\min G=\min F$,
(1) or Δ contains all d-faces $H \geq F$ with $\max H=\max F$.

Implies WC; passes to the 1-skeleton. New for graphs? It says, if $15 \in G$, then G contains either all of $12,13,14$, or all of $25,35,45$.

Theorem (BB-Seccia-Varbaro 21+)

For $d \geq 2$, the d-complex Q^{d} obtained taking $d-1$ consecutive cones over a square, is weakly-closed but not semi-closed.

Semi-Closed complexes

\exists labeling such that for each d-face $F=\left[a_{0}, a_{1}, \cdots a_{d}\right] \in \Delta \ldots$
(1) either Δ contains all d-faces $G \leq F$ with $\min G=\min F$,
(1) or Δ contains all d-faces $H \geq F$ with $\max H=\max F$.

Implies WC; passes to the 1-skeleton. New for graphs? It says, if $15 \in G$, then G contains either all of $12,13,14$, or all of $25,35,45$.

Theorem (BB-Seccia-Varbaro 21+)

For $d \geq 2$, the d-complex Q^{d} obtained taking $d-1$ consecutive cones over a square, is weakly-closed but not semi-closed.
(Harder: $Q^{2}=123,125,234,245$;

Semi-Closed complexes

\exists labeling such that for each d-face $F=\left[a_{0}, a_{1}, \cdots a_{d}\right] \in \Delta \ldots$
(1) either Δ contains all d-faces $G \leq F$ with $\min G=\min F$,
(1) or Δ contains all d-faces $H \geq F$ with $\max H=\max F$.

Implies WC; passes to the 1-skeleton. New for graphs? It says, if $15 \in G$, then G contains either all of $12,13,14$, or all of $25,35,45$.

Theorem (BB-Seccia-Varbaro 21+)

For $d \geq 2$, the d-complex Q^{d} obtained taking $d-1$ consecutive cones over a square, is weakly-closed but not semi-closed.
(Harder: $Q^{2}=123,125,234,245 ; Q^{3}=1236,1256,2346,2456$; etc.,

Semi-Closed complexes

\exists labeling such that for each d-face $F=\left[a_{0}, a_{1}, \cdots a_{d}\right] \in \Delta \ldots$
(1) either Δ contains all d-faces $G \leq F$ with $\min G=\min F$,
(1) or Δ contains all d-faces $H \geq F$ with $\max H=\max F$.

Implies WC; passes to the 1-skeleton. New for graphs? It says, if $15 \in G$, then G contains either all of $12,13,14$, or all of $25,35,45$.

Theorem (BB-Seccia-Varbaro 21+)

For $d \geq 2$, the d-complex Q^{d} obtained taking $d-1$ consecutive cones over a square, is weakly-closed but not semi-closed.
(Harder: $Q^{2}=123,125,234,245 ; Q^{3}=1236,1256,2346,2456$; etc., shows the weakly-closed labeling.

Semi-Closed complexes

\exists labeling such that for each d-face $F=\left[a_{0}, a_{1}, \cdots a_{d}\right] \in \Delta \ldots$
(1) either Δ contains all d-faces $G \leq F$ with $\min G=\min F$,
(1) or Δ contains all d-faces $H \geq F$ with $\max H=\max F$.

Implies WC; passes to the 1 -skeleton. New for graphs? It says, if $15 \in G$, then G contains either all of $12,13,14$, or all of $25,35,45$.

Theorem (BB-Seccia-Varbaro 21+)

For $d \geq 2$, the d-complex Q^{d} obtained taking $d-1$ consecutive cones over a square, is weakly-closed but not semi-closed.
(Harder: $Q^{2}=123,125,234,245 ; Q^{3}=1236,1256,2346,2456$; etc., shows the weakly-closed labeling. Then by induction one proves that for $d \geq 7$, if Q^{d} is not semi-closed, neither is Q^{d+1}.)

Semi-Closed complexes

\exists labeling such that for each d-face $F=\left[a_{0}, a_{1}, \cdots a_{d}\right] \in \Delta \ldots$
(1) either Δ contains all d-faces $G \leq F$ with $\min G=\min F$,
(1) or Δ contains all d-faces $H \geq F$ with $\max H=\max F$.

Implies WC; passes to the 1 -skeleton. New for graphs? It says, if $15 \in G$, then G contains either all of $12,13,14$, or all of $25,35,45$.

Theorem (BB-Seccia-Varbaro 21+)

For $d \geq 2$, the d-complex Q^{d} obtained taking $d-1$ consecutive cones over a square, is weakly-closed but not semi-closed.
(Harder: $Q^{2}=123,125,234,245 ; Q^{3}=1236,1256,2346,2456$; etc., shows the weakly-closed labeling. Then by induction one proves that for $d \geq 7$, if Q^{d} is not semi-closed, neither is Q^{d+1}.)

Interval (or 'under-closed') complexes

\exists labeling such that for each d-face $F=\left[a_{0}, a_{1}, \cdots a_{d}\right] \in \Delta \ldots$
Δ contains all d-faces $G \leq F$ with $\min G=\min F$.

Interval (or 'under-closed') complexes

\exists labeling such that for each d-face $F=\left[a_{0}, a_{1}, \cdots a_{d}\right] \in \Delta \ldots$
Δ contains all d-faces $G \leq F$ with $\min G=\min F$.

Interval (or 'under-closed') complexes

\exists labeling such that for each d-face $F=\left[a_{0}, a_{1}, \cdots a_{d}\right] \in \Delta \ldots$
Δ contains all d-faces $G \leq F$ with $\min G=\min F$.

Interval (or 'under-closed') complexes

\exists labeling such that for each d-face $F=\left[a_{0}, a_{1}, \cdots a_{d}\right] \in \Delta \ldots$
Δ contains all d-faces $G \leq F$ with $\min G=\min F$.

Generalizes interval graphs, passes to the 1 -skeleton.

Interval (or 'under-closed') complexes

\exists labeling such that for each d-face $F=\left[a_{0}, a_{1}, \cdots a_{d}\right] \in \Delta \ldots$
Δ contains all d-faces $G \leq F$ with $\min G=\min F$.

Generalizes interval graphs, passes to the 1-skeleton.
Theorem (BB-Seccia-Varbaro 21+)
For $d \geq 1, S^{d} \stackrel{\text { def }}{=} \operatorname{susp}\left(\Sigma_{d}^{d-1}\right)$, aka the boundary of the $(d+1)$-complex of facets H_{1}, H_{2},

Interval (or 'under-closed') complexes

\exists labeling such that for each d-face $F=\left[a_{0}, a_{1}, \cdots a_{d}\right] \in \Delta \ldots$
Δ contains all d-faces $G \leq F$ with $\min G=\min F$.

Generalizes interval graphs, passes to the 1-skeleton.
Theorem (BB-Seccia-Varbaro 21+)
For $d \geq 1, S^{d} \stackrel{\text { def }}{=} \operatorname{susp}\left(\Sigma_{d}^{d-1}\right)$, aka the boundary of the $(d+1)$-complex of facets H_{1}, H_{2}, is semi-closed, but not interval.

Interval (or 'under-closed') complexes

\exists labeling such that for each d-face $F=\left[a_{0}, a_{1}, \cdots a_{d}\right] \in \Delta \ldots$
Δ contains all d-faces $G \leq F$ with $\min G=\min F$.

Generalizes interval graphs, passes to the 1-skeleton.
Theorem (BB-Seccia-Varbaro 21+)
For $d \geq 1, S^{d} \stackrel{\text { def }}{=} \operatorname{susp}\left(\Sigma_{d}^{d-1}\right)$, aka the boundary of the $(d+1)$-complex of facets H_{1}, H_{2}, is semi-closed, but not interval.
(The given labeling assigns labels 1 and $d+3$ to the apices;

Interval (or 'under-closed') complexes

\exists labeling such that for each d-face $F=\left[a_{0}, a_{1}, \cdots a_{d}\right] \in \Delta \ldots$
Δ contains all d-faces $G \leq F$ with $\min G=\min F$.

Generalizes interval graphs, passes to the 1-skeleton.
Theorem (BB-Seccia-Varbaro 21+)
For $d \geq 1, S^{d} \stackrel{\text { def }}{=} \operatorname{susp}\left(\Sigma_{d}^{d-1}\right)$, aka the boundary of the $(d+1)$-complex of facets H_{1}, H_{2}, is semi-closed, but not interval.
(The given labeling assigns labels 1 and $d+3$ to the apices; it's semi-closed, not interval.

Interval (or 'under-closed') complexes

\exists labeling such that for each d-face $F=\left[a_{0}, a_{1}, \cdots a_{d}\right] \in \Delta \ldots$
Δ contains all d-faces $G \leq F$ with $\min G=\min F$.

Generalizes interval graphs, passes to the 1-skeleton.

Theorem (BB-Seccia-Varbaro 21+)

For $d \geq 1, S^{d} \stackrel{\text { def }}{=} \operatorname{susp}\left(\sum_{d}^{d-1}\right)$, aka the boundary of the $(d+1)$-complex of facets H_{1}, H_{2}, is semi-closed, but not interval.
(The given labeling assigns labels 1 and $d+3$ to the apices; it's semi-closed, not interval. If either 1 or $d+3$ is not assigned to an apex,

Interval (or 'under-closed') complexes

\exists labeling such that for each d-face $F=\left[a_{0}, a_{1}, \cdots a_{d}\right] \in \Delta \ldots$
Δ contains all d-faces $G \leq F$ with $\min G=\min F$.

Generalizes interval graphs, passes to the 1-skeleton.

Theorem (BB-Seccia-Varbaro 21+)

For $d \geq 1, S^{d} \stackrel{\text { def }}{=} \operatorname{susp}\left(\sum_{d}^{d-1}\right)$, aka the boundary of the $(d+1)$-complex of facets H_{1}, H_{2}, is semi-closed, but not interval.
(The given labeling assigns labels 1 and $d+3$ to the apices; it's semi-closed, not interval. If either 1 or $d+3$ is not assigned to an apex, some d-face H contains both 1 and $d+3$;

Interval (or 'under-closed') complexes

\exists labeling such that for each d-face $F=\left[a_{0}, a_{1}, \cdots a_{d}\right] \in \Delta \ldots$
Δ contains all d-faces $G \leq F$ with $\min G=\min F$.

Generalizes interval graphs, passes to the 1-skeleton.

Theorem (BB-Seccia-Varbaro 21+)

For $d \geq 1, S^{d} \stackrel{\text { def }}{=} \operatorname{susp}\left(\Sigma_{d}^{d-1}\right)$, aka the boundary of the $(d+1)$-complex of facets H_{1}, H_{2}, is semi-closed, but not interval.
(The given labeling assigns labels 1 and $d+3$ to the apices; it's semi-closed, not interval. If either 1 or $d+3$ is not assigned to an apex, some d-face H contains both 1 and $d+3$; were the labeling interval, the 3 facets $[1, \ldots, d] * i$, $i=d+1, d+2, d+3$, would be in S^{d},

Interval (or 'under-closed') complexes

\exists labeling such that for each d-face $F=\left[a_{0}, a_{1}, \cdots a_{d}\right] \in \Delta \ldots$
Δ contains all d-faces $G \leq F$ with $\min G=\min F$.

Generalizes interval graphs, passes to the 1-skeleton.

Theorem (BB-Seccia-Varbaro 21+)

For $d \geq 1, S^{d} \stackrel{\text { def }}{=} \operatorname{susp}\left(\Sigma_{d}^{d-1}\right)$, aka the boundary of the $(d+1)$-complex of facets H_{1}, H_{2}, is semi-closed, but not interval.
(The given labeling assigns labels 1 and $d+3$ to the apices; it's semi-closed, not interval. If either 1 or $d+3$ is not assigned to an apex, some d-face H contains both 1 and $d+3$; were the labeling interval, the 3 facets $[1, \ldots, d] * i$, $i=d+1, d+2, d+3$, would be in S^{d}, a contradiction with S^{d} manifold.)

Unit-interval complexes

Unit-interval complexes

\exists labeling such that for each d-face $F=\left[a_{0}, a_{1}, \cdots a_{d}\right] \in \Delta \ldots$
Δ contains all d-faces with vertices in $\left\{a_{0}, a_{0}+1, a_{0}+2, \ldots, a_{d}\right\}$.

Unit-interval complexes

\exists labeling such that for each d-face $F=\left[a_{0}, a_{1}, \cdots a_{d}\right] \in \Delta \ldots$
Δ contains all d-faces with vertices in $\left\{a_{0}, a_{0}+1, a_{0}+2, \ldots, a_{d}\right\}$.

Unit-interval complexes

\exists labeling such that for each d-face $F=\left[a_{0}, a_{1}, \cdots a_{d}\right] \in \Delta \ldots$
Δ contains all d-faces with vertices in $\left\{a_{0}, a_{0}+1, a_{0}+2, \ldots, a_{d}\right\}$.

Unit-interval complexes

\exists labeling such that for each d-face $F=\left[a_{0}, a_{1}, \cdots a_{d}\right] \in \Delta \ldots$
Δ contains all d-faces with vertices in $\left\{a_{0}, a_{0}+1, a_{0}+2, \ldots, a_{d}\right\}$.

Generalizes unit-interval graphs, passes to the 1-skeleton.

Unit-interval complexes

\exists labeling such that for each d-face $F=\left[a_{0}, a_{1}, \cdots a_{d}\right] \in \Delta \ldots$
Δ contains all d-faces with vertices in $\left\{a_{0}, a_{0}+1, a_{0}+2, \ldots, a_{d}\right\}$.

Generalizes unit-interval graphs, passes to the 1-skeleton. Independently, same definition: Almousa-Vandebogert.

Theorem (BB-Seccia-Varbaro 21+)

For $d \geq 1$, the d-complex Δ_{k}^{d} obtained taking d-cones over k disjoint points, is interval, but not unit-interval if $k \geq 3$.

Unit-interval complexes

\exists labeling such that for each d-face $F=\left[a_{0}, a_{1}, \cdots a_{d}\right] \in \Delta \ldots$
Δ contains all d-faces with vertices in $\left\{a_{0}, a_{0}+1, a_{0}+2, \ldots, a_{d}\right\}$.

Generalizes unit-interval graphs, passes to the 1-skeleton. Independently, same definition: Almousa-Vandebogert.

Theorem (BB-Seccia-Varbaro 21+)

For $d \geq 1$, the d-complex Δ_{k}^{d} obtained taking d-cones over k disjoint points, is interval, but not unit-interval if $k \geq 3$.
(Easy: It's interval by labeling the apices $1,2, \ldots, d$.

Unit-interval complexes

\exists labeling such that for each d-face $F=\left[a_{0}, a_{1}, \cdots a_{d}\right] \in \Delta \ldots$
Δ contains all d-faces with vertices in $\left\{a_{0}, a_{0}+1, a_{0}+2, \ldots, a_{d}\right\}$.

Generalizes unit-interval graphs, passes to the 1-skeleton. Independently, same definition: Almousa-Vandebogert.

Theorem (BB-Seccia-Varbaro 21+)

For $d \geq 1$, the d-complex Δ_{k}^{d} obtained taking d-cones over k disjoint points, is interval, but not unit-interval if $k \geq 3$.
(Easy: It's interval by labeling the apices $1,2, \ldots, d$. Not unit-interval: exercise!)

Results 1: The Hierarchy

Results 1: The Hierarchy

Obviously,

Results 1: The Hierarchy

Obviously,

- unit-interval \Longrightarrow under-

Results 1: The Hierarchy

Obviously,

- unit-interval \Longrightarrow under- \Longrightarrow semi-

Results 1: The Hierarchy

Obviously,

- unit-interval \Longrightarrow under- \Longrightarrow semi- \Longrightarrow weakly-closed;

Results 1: The Hierarchy

Obviously,

- unit-interval \Longrightarrow under- \Longrightarrow semi- \Longrightarrow weakly-closed;
- unit-interval \Longrightarrow chordal.

All implications are strict (we have simple examples in any dimension!).

Results 1: The Hierarchy

Obviously,

- unit-interval \Longrightarrow under- \Longrightarrow semi- \Longrightarrow weakly-closed;
- unit-interval \Longrightarrow chordal.

All implications are strict (we have simple examples in any dimension!).

Results 1: The Hierarchy

Obviously,

- unit-interval \Longrightarrow under- \Longrightarrow semi- \Longrightarrow weakly-closed;
- unit-interval \Longrightarrow chordal.

All implications are strict (we have simple examples in any dimension!).
However, no direction of Gilmore-Hoffman extends.

- under-closed \nRightarrow chordal.

Results 1: The Hierarchy

Obviously,

- unit-interval \Longrightarrow under- \Longrightarrow semi- \Longrightarrow weakly-closed;
- unit-interval \Longrightarrow chordal.

All implications are strict (we have simple examples in any dimension!).
However, no direction of Gilmore-Hoffman extends.

- under-closed \nRightarrow chordal. Counterexample:

$$
123,124,234,235 .
$$

- chordal + weakly-closed \nRightarrow under-closed.

Results 1: The Hierarchy

Obviously,

- unit-interval \Longrightarrow under- \Longrightarrow semi- \Longrightarrow weakly-closed;
- unit-interval \Longrightarrow chordal.

All implications are strict (we have simple examples in any dimension!).
However, no direction of Gilmore-Hoffman extends.

- under-closed \nRightarrow chordal. Counterexample:

$$
123,124,234,235 .
$$

- chordal + weakly-closed \nRightarrow under-closed. Counterexample: $123,256,345,346,347,356,456$.

Results 1: The Hierarchy

Obviously,

- unit-interval \Longrightarrow under- \Longrightarrow semi- \Longrightarrow weakly-closed;
- unit-interval \Longrightarrow chordal.

All implications are strict (we have simple examples in any dimension!).
However, no direction of Gilmore-Hoffman extends.

- under-closed \nRightarrow chordal. Counterexample:

$$
123,124,234,235 .
$$

- chordal + weakly-closed \nRightarrow under-closed. Counterexample:

$$
123,256,345,346,347,356,456 .
$$

This labeling satisfies the semi-closed but not the chordal condition.

Results 1: The Hierarchy

Obviously,

- unit-interval \Longrightarrow under- \Longrightarrow semi- \Longrightarrow weakly-closed;
- unit-interval \Longrightarrow chordal.

All implications are strict (we have simple examples in any dimension!).
However, no direction of Gilmore-Hoffman extends.

- under-closed \nRightarrow chordal. Counterexample:

$$
123,124,234,235 .
$$

- chordal + weakly-closed \nRightarrow under-closed. Counterexample:

$$
123,256,345,346,347,356,456 .
$$

This labeling satisfies the semi-closed but not the chordal condition. Another labeling satisfies chordal, but not semi-closed:

$$
123,124,134,135,167,234,246 .
$$

Results 1: The Hierarchy

Obviously,

- unit-interval \Longrightarrow under- \Longrightarrow semi- \Longrightarrow weakly-closed;
- unit-interval \Longrightarrow chordal.

All implications are strict (we have simple examples in any dimension!).
However, no direction of Gilmore-Hoffman extends.

- under-closed \nRightarrow chordal. Counterexample:

$$
123,124,234,235 .
$$

- chordal + weakly-closed \nRightarrow under-closed. Counterexample:

$$
123,256,345,346,347,356,456 .
$$

This labeling satisfies the semi-closed but not the chordal condition. Another labeling satisfies chordal, but not semi-closed:

$$
123,124,134,135,167,234,246 .
$$

But no labeling satisfies both, or else it would be under-closed.

Results 2: Hamiltonian paths

Results 2: Hamiltonian paths

A d-complex is traceable if it contains all H_{i} for $i \leq n-d$; it is Hamiltonian if it contains all H_{i} 's.

Theorem (BB-Seccia-Varbaro 21+)
Every unit-interval strongly-connected d-dimensional simplicial complex is traceable.

Results 2: Hamiltonian paths

A d-complex is traceable if it contains all H_{i} for $i \leq n-d$; it is Hamiltonian if it contains all H_{i} 's.

Theorem (BB-Seccia-Varbaro 21+)
Every unit-interval strongly-connected d-dimensional simplicial complex is traceable.

Results 2: Hamiltonian paths

A d-complex is traceable if it contains all H_{i} for $i \leq n-d$; it is Hamiltonian if it contains all H_{i} 's.

Theorem (BB-Seccia-Varbaro 21+)
Every unit-interval strongly-connected d-dimensional simplicial complex is traceable.

Proof is 2 pages, but elementary: extends the idea in Herzog et al.

Results 2: Hamiltonian paths

A d-complex is traceable if it contains all H_{i} for $i \leq n-d$; it is Hamiltonian if it contains all H_{i} 's.

Theorem (BB-Seccia-Varbaro 21+)
Every unit-interval strongly-connected d-dimensional simplicial complex is traceable.

Proof is 2 pages, but elementary: extends the idea in Herzog et al.
Theorem (BB-Seccia-Varbaro 21+)
Every unit-interval d-complex that remains strongly connected after the deletion of d or less vertices, is Hamiltonian.

Results 2: Hamiltonian paths

A d-complex is traceable if it contains all H_{i} for $i \leq n-d$; it is Hamiltonian if it contains all H_{i} 's.

Theorem (BB-Seccia-Varbaro 21+)
Every unit-interval strongly-connected d-dimensional simplicial complex is traceable.

Proof is 2 pages, but elementary: extends the idea in Herzog et al.
Theorem (BB-Seccia-Varbaro 21+)
Every unit-interval d-complex that remains strongly connected after the deletion of d or less vertices, is Hamiltonian.

Proof: Show first that Δ contains all faces of gap $\leq d$. Then e.g. if $n=9$ and $d=2$, (the dual graph of) Δ must contain the cycle
$135,357,579,789,689,468,246,124,123$

Results 2: Hamiltonian paths

A d-complex is traceable if it contains all H_{i} for $i \leq n-d$; it is Hamiltonian if it contains all H_{i} 's.

Theorem (BB-Seccia-Varbaro 21+)
Every unit-interval strongly-connected d-dimensional simplicial complex is traceable.

Proof is 2 pages, but elementary: extends the idea in Herzog et al.

Theorem (BB-Seccia-Varbaro 21+)

Every unit-interval d-complex that remains strongly connected after the deletion of d or less vertices, is Hamiltonian.

Proof: Show first that Δ contains all faces of gap $\leq d$. Then e.g. if $n=9$ and $d=2$, (the dual graph of) Δ must contain the cycle

$$
135,357,579,789,689,468,246,124,123
$$

which suggests how to relabel the vertices.

Determinantal facet ideals (Ene-Herzog-Hibi-Mohammadi)

Determinantal facet ideals (Ene-Herzog-Hibi-Mohammadi)

Given a pure d-complex with n vertices and f facets, build a matrix of variables with $d+1$ rows and n columns.

Given a pure d-complex with n vertices and f facets, build a matrix of variables with $d+1$ rows and n columns. Any facet $F=\left[a_{0}, \cdots, a_{d}\right]$ suggests a minor formed by the columns a_{0}, \ldots, a_{d}.

Determinantal facet ideals (Ene-Herzog-Hibi-Mohammadi)

Given a pure d-complex with n vertices and f facets, build a matrix of variables with $d+1$ rows and n columns. Any facet $F=\left[a_{0}, \cdots, a_{d}\right]$ suggests a minor formed by the columns a_{0}, \ldots, a_{d}. The ideal generated by these minors is called determinantal facet ideal (DFI).

Example: $\Delta=124,145$.

Determinantal facet ideals (Ene-Herzog-Hibi-Mohammadi)

Given a pure d-complex with n vertices and f facets, build a matrix of variables with $d+1$ rows and n columns. Any facet $F=\left[a_{0}, \cdots, a_{d}\right]$ suggests a minor formed by the columns a_{0}, \ldots, a_{d}. The ideal generated by these minors is called determinantal facet ideal (DFI).

Example: $\Delta=124,145$. So $d=2, n=5$.

Determinantal facet ideals (Ene-Herzog-Hibi-Mohammadi)

Given a pure d-complex with n vertices and f facets, build a matrix of variables with $d+1$ rows and n columns. Any facet $F=\left[a_{0}, \cdots, a_{d}\right]$ suggests a minor formed by the columns a_{0}, \ldots, a_{d}. The ideal generated by these minors is called determinantal facet ideal (DFI).

Example: $\Delta=124,145$. So $d=2, n=5$. Take matrix

$$
M=\left(\begin{array}{lllll}
x_{01} & x_{02} & x_{03} & x_{04} & x_{05} \\
x_{11} & x_{12} & x_{13} & x_{14} & x_{15} \\
x_{21} & x_{22} & x_{23} & x_{24} & x_{25}
\end{array}\right)
$$

Determinantal facet ideals (Ene-Herzog-Hibi-Mohammadi)

Given a pure d-complex with n vertices and f facets, build a matrix of variables with $d+1$ rows and n columns. Any facet $F=\left[a_{0}, \cdots, a_{d}\right]$ suggests a minor formed by the columns a_{0}, \ldots, a_{d}. The ideal generated by these minors is called determinantal facet ideal (DFI).

Example: $\Delta=124,145$. So $d=2, n=5$. Take matrix

$$
M=\left(\begin{array}{lllll}
x_{01} & x_{02} & x_{03} & x_{04} & x_{05} \\
x_{11} & x_{12} & x_{13} & x_{14} & x_{15} \\
x_{21} & x_{22} & x_{23} & x_{24} & x_{25}
\end{array}\right)
$$

$124 \rightsquigarrow\left|\begin{array}{lll}x_{01} & x_{02} & x_{04} \\ x_{11} & x_{12} & x_{14} \\ x_{21} & x_{22} & x_{24}\end{array}\right|$,

Determinantal facet ideals (Ene-Herzog-Hibi-Mohammadi)

Given a pure d-complex with n vertices and f facets, build a matrix of variables with $d+1$ rows and n columns. Any facet $F=\left[a_{0}, \cdots, a_{d}\right]$ suggests a minor formed by the columns a_{0}, \ldots, a_{d}. The ideal generated by these minors is called determinantal facet ideal (DFI).

Example: $\Delta=124,145$. So $d=2, n=5$. Take matrix

$$
\begin{aligned}
& M=\left(\begin{array}{lllll}
x_{01} & x_{02} & x_{03} & x_{04} & x_{05} \\
x_{11} & x_{12} & x_{13} & x_{14} & x_{15} \\
x_{21} & x_{22} & x_{23} & x_{24} & x_{25}
\end{array}\right) \\
& 124 \leadsto\left|\begin{array}{lll}
x_{01} & x_{02} & x_{04} \\
x_{11} & x_{12} & x_{14} \\
x_{21} & x_{22} & x_{24}
\end{array}\right|, \quad 145 \leadsto\left|\begin{array}{lll}
x_{01} & x_{04} & x_{05} \\
x_{11} & x_{14} & x_{15} \\
x_{21} & x_{24} & x_{25}
\end{array}\right| .
\end{aligned}
$$

Determinantal facet ideals (Ene-Herzog-Hibi-Mohammadi)

Given a pure d-complex with n vertices and f facets, build a matrix of variables with $d+1$ rows and n columns. Any facet $F=\left[a_{0}, \cdots, a_{d}\right]$ suggests a minor formed by the columns a_{0}, \ldots, a_{d}. The ideal generated by these minors is called determinantal facet ideal (DFI).

Example: $\Delta=124,145$. So $d=2, n=5$. Take matrix

$$
\begin{gathered}
M=\left(\begin{array}{lllll}
x_{01} & x_{02} & x_{03} & x_{04} & x_{05} \\
x_{11} & x_{12} & x_{13} & x_{14} & x_{15} \\
x_{21} & x_{22} & x_{23} & x_{24} & x_{25}
\end{array}\right) \\
124 \rightsquigarrow\left|\begin{array}{llll}
x_{01} & x_{02} & x_{04} \\
x_{11} & x_{12} & x_{14} \\
x_{21} & x_{22} & x_{24}
\end{array}\right|, \\
145 \\
\rightsquigarrow\left|\begin{array}{lll}
x_{01} & x_{04} & x_{05} \\
x_{11} & x_{14} & x_{15} \\
x_{21} & x_{24} & x_{25}
\end{array}\right| .
\end{gathered}
$$

Ideal generated by f polynomials, each sum of $(d+1)$! squarefree monomials of degree $d+1$, in a ring with $(d+1) n$ variables.

Results 3: Algebraic consequences

Results 3: Algebraic consequences

Bad news, known before our work:

- DFls are not always radical, e.g for $\Delta=124,145,234,345$ (which is weakly-closed!).

Results 3: Algebraic consequences

Bad news, known before our work:

- DFIs are not always radical, e.g for $\Delta=124,145,234,345$ (which is weakly-closed!). This is a drawback.

Results 3: Algebraic consequences

Bad news, known before our work:

- DFIs are not always radical, e.g for $\Delta=124,145,234,345$ (which is weakly-closed!). This is a drawback.
- Hard to manipulate: Two of the main results of Ene et al. are incorrect, in particular the one trying to understand when the minors form a Gröbner basis.

Results 3: Algebraic consequences

Bad news, known before our work:

- DFIs are not always radical, e.g for $\Delta=124,145,234,345$ (which is weakly-closed!). This is a drawback.
- Hard to manipulate: Two of the main results of Ene et al. are incorrect, in particular the one trying to understand when the minors form a Gröbner basis.

Results 3: Algebraic consequences

Bad news, known before our work:

- DFIs are not always radical, e.g for $\Delta=124,145,234,345$ (which is weakly-closed!). This is a drawback.
- Hard to manipulate: Two of the main results of Ene et al. are incorrect, in particular the one trying to understand when the minors form a Gröbner basis. But:

Results 3: Algebraic consequences

Bad news, known before our work:

- DFIs are not always radical, e.g for $\Delta=124,145,234,345$ (which is weakly-closed!). This is a drawback.
- Hard to manipulate: Two of the main results of Ene et al. are incorrect, in particular the one trying to understand when the minors form a Gröbner basis. But:

Results 3: Algebraic consequences

Bad news, known before our work:

- DFls are not always radical, e.g for $\Delta=124,145,234,345$ (which is weakly-closed!). This is a drawback.
- Hard to manipulate: Two of the main results of Ene et al. are incorrect, in particular the one trying to understand when the minors form a Gröbner basis. But:

Theorem (BB-Seccia-Varbaro 21+)

The DFI of all semi-closed complexes are radical. Moreover, they have a square-free initial ideal with respect to lex, and in characteristic p, they are F-pure.

Results 3: Algebraic consequences

Bad news, known before our work:

- DFls are not always radical, e.g for $\Delta=124,145,234,345$ (which is weakly-closed!). This is a drawback.
- Hard to manipulate: Two of the main results of Ene et al. are incorrect, in particular the one trying to understand when the minors form a Gröbner basis. But:

Theorem (BB-Seccia-Varbaro 21+)

The DFI of all semi-closed complexes are radical. Moreover, they have a square-free initial ideal with respect to lex, and in characteristic p, they are F-pure.

Results 3: Algebraic consequences

Bad news, known before our work:

- DFls are not always radical, e.g for $\Delta=124,145,234,345$ (which is weakly-closed!). This is a drawback.
- Hard to manipulate: Two of the main results of Ene et al. are incorrect, in particular the one trying to understand when the minors form a Gröbner basis. But:

Theorem (BB-Seccia-Varbaro 21+)

The DFI of all semi-closed complexes are radical. Moreover, they have a square-free initial ideal with respect to lex, and in characteristic p, they are F-pure.

Results 3: Algebraic consequences

Bad news, known before our work:

- DFls are not always radical, e.g for $\Delta=124,145,234,345$ (which is weakly-closed!). This is a drawback.
- Hard to manipulate: Two of the main results of Ene et al. are incorrect, in particular the one trying to understand when the minors form a Gröbner basis. But:

Theorem (BB-Seccia-Varbaro 21+)

The DFI of all semi-closed complexes are radical. Moreover, they have a square-free initial ideal with respect to lex, and in characteristic p, they are F-pure.

Theorem (BB-Seccia-Varbaro 21+)

Let Δ be a strongly-connected d-complex.
Δ is unit-interval $\Longleftrightarrow \Delta$ is traceable and with respect to the same labeling, the generators of its DFI form a Gröbner basis wrt LEX.

Results 3: Algebraic consequences

Bad news, known before our work:

- DFls are not always radical, e.g for $\Delta=124,145,234,345$ (which is weakly-closed!). This is a drawback.
- Hard to manipulate: Two of the main results of Ene et al. are incorrect, in particular the one trying to understand when the minors form a Gröbner basis. But:

Theorem (BB-Seccia-Varbaro 21+)

The DFI of all semi-closed complexes are radical. Moreover, they have a square-free initial ideal with respect to lex, and in characteristic p, they are F-pure.

Theorem (BB-Seccia-Varbaro 21+)

Let Δ be a strongly-connected d-complex.
Δ is unit-interval $\Longleftrightarrow \Delta$ is traceable and with respect to the same labeling, the generators of its DFI form a Gröbner basis wrt LEX.

Results 3: Algebraic consequences

Bad news, known before our work:

- DFls are not always radical, e.g for $\Delta=124,145,234,345$ (which is weakly-closed!). This is a drawback.
- Hard to manipulate: Two of the main results of Ene et al. are incorrect, in particular the one trying to understand when the minors form a Gröbner basis. But:

Theorem (BB-Seccia-Varbaro 21+)

The DFI of all semi-closed complexes are radical. Moreover, they have a square-free initial ideal with respect to lex, and in characteristic p, they are F-pure.

Theorem (BB-Seccia-Varbaro 21+)

Let Δ be a strongly-connected d-complex.
Δ is unit-interval $\Longleftrightarrow \Delta$ is traceable and with respect to the same labeling, the generators of its DFI form a Gröbner basis wrt LEX.

Results 3: Algebraic consequences

Bad news, known before our work:

- DFls are not always radical, e.g for $\Delta=124,145,234,345$ (which is weakly-closed!). This is a drawback.
- Hard to manipulate: Two of the main results of Ene et al. are incorrect, in particular the one trying to understand when the minors form a Gröbner basis. But:

Theorem (BB-Seccia-Varbaro 21+)

The DFI of all semi-closed complexes are radical. Moreover, they have a square-free initial ideal with respect to lex, and in characteristic p, they are F-pure.

Theorem (BB-Seccia-Varbaro 21+)

Let Δ be a strongly-connected d-complex.
Δ is unit-interval $\Longleftrightarrow \Delta$ is traceable and with respect to the same labeling, the generators of its DFI form a Gröbner basis wrt LEX.

Results 3: Algebraic consequences

Bad news, known before our work:

- DFls are not always radical, e.g for $\Delta=124,145,234,345$ (which is weakly-closed!). This is a drawback.
- Hard to manipulate: Two of the main results of Ene et al. are incorrect, in particular the one trying to understand when the minors form a Gröbner basis. But:

Theorem (BB-Seccia-Varbaro 21+)

The DFI of all semi-closed complexes are radical. Moreover, they have a square-free initial ideal with respect to lex, and in characteristic p, they are F-pure.

Theorem (BB-Seccia-Varbaro 21+)

Let Δ be a strongly-connected d-complex.
Δ is unit-interval $\Longleftrightarrow \Delta$ is traceable and with respect to the same labeling, the generators of its DFI form a Gröbner basis wrt LEX.

Knutson ideals

Knutson ideals

The key notion behind these results is Knutson ideals.

Knutson ideals

The key notion behind these results is Knutson ideals. Given $S=\mathbb{K}\left[x_{1}, \ldots x_{n}\right]$

Knutson ideals

The key notion behind these results is Knutson ideals. Given $S=\mathbb{K}\left[x_{1}, \ldots x_{n}\right]$ and $f \in S$ such that $\mathrm{in}_{<}(f)$ is squarefree,

Knutson ideals

The key notion behind these results is Knutson ideals. Given $S=\mathbb{K}\left[x_{1}, \ldots x_{n}\right]$ and $f \in S$ such that in ${ }_{<}(f)$ is squarefree, we can construct a family of ideals from (f), taking the associated primes, their intersections, their sums, and iterating.

Knutson ideals

The key notion behind these results is Knutson ideals. Given $S=\mathbb{K}\left[x_{1}, \ldots x_{n}\right]$ and $f \in S$ such that in ${ }_{<}(f)$ is squarefree, we can construct a family of ideals from (f), taking the associated primes, their intersections, their sums, and iterating. This class is called C_{f} and its elements "Knutson ideals of f ".

Theorem (Knutson 2009 char p, Seccia 2021 char 0)

- Different Knutson ideals have different initial ideals.

Knutson ideals

The key notion behind these results is Knutson ideals. Given $S=\mathbb{K}\left[x_{1}, \ldots x_{n}\right]$ and $f \in S$ such that in ${ }_{<}(f)$ is squarefree, we can construct a family of ideals from (f), taking the associated primes, their intersections, their sums, and iterating. This class is called C_{f} and its elements "Knutson ideals of f ".

Theorem (Knutson 2009 char p, Seccia 2021 char 0)

- Different Knutson ideals have different initial ideals. So Knutson ideals of f are finitely many.
- The union of the GBs of two Knutson ideals is a GB for the union.

Knutson ideals

The key notion behind these results is Knutson ideals. Given $S=\mathbb{K}\left[x_{1}, \ldots x_{n}\right]$ and $f \in S$ such that in ${ }_{<}(f)$ is squarefree, we can construct a family of ideals from (f), taking the associated primes, their intersections, their sums, and iterating. This class is called C_{f} and its elements "Knutson ideals of f ".

Theorem (Knutson 2009 char p, Seccia 2021 char 0)

- Different Knutson ideals have different initial ideals. So Knutson ideals of f are finitely many.
- The union of the GBs of two Knutson ideals is a GB for the union.
- Knutson ideals have squarefree initial ideals.

Knutson ideals

The key notion behind these results is Knutson ideals. Given $S=\mathbb{K}\left[x_{1}, \ldots x_{n}\right]$ and $f \in S$ such that in ${ }_{<}(f)$ is squarefree, we can construct a family of ideals from (f), taking the associated primes, their intersections, their sums, and iterating. This class is called C_{f} and its elements "Knutson ideals of f ".

Theorem (Knutson 2009 char p, Seccia 2021 char 0)

- Different Knutson ideals have different initial ideals. So Knutson ideals of f are finitely many.
- The union of the GBs of two Knutson ideals is a GB for the union.
- Knutson ideals have squarefree initial ideals. So they all radical;

Knutson ideals

The key notion behind these results is Knutson ideals. Given $S=\mathbb{K}\left[x_{1}, \ldots x_{n}\right]$ and $f \in S$ such that in ${ }_{<}(f)$ is squarefree, we can construct a family of ideals from (f), taking the associated primes, their intersections, their sums, and iterating. This class is called C_{f} and its elements "Knutson ideals of f ".

Theorem (Knutson 2009 char p, Seccia 2021 char 0)

- Different Knutson ideals have different initial ideals. So Knutson ideals of f are finitely many.
- The union of the GBs of two Knutson ideals is a GB for the union.
- Knutson ideals have squarefree initial ideals. So they all radical; by Conca-Varbaro, we can read off regularity and extremal Betti numbers from the initial ideal.

Knutson ideals

The key notion behind these results is Knutson ideals. Given $S=\mathbb{K}\left[x_{1}, \ldots x_{n}\right]$ and $f \in S$ such that in ${ }_{<}(f)$ is squarefree, we can construct a family of ideals from (f), taking the associated primes, their intersections, their sums, and iterating. This class is called C_{f} and its elements "Knutson ideals of f ".

Theorem (Knutson 2009 char p, Seccia 2021 char 0)

- Different Knutson ideals have different initial ideals. So Knutson ideals of f are finitely many.
- The union of the GBs of two Knutson ideals is a GB for the union.
- Knutson ideals have squarefree initial ideals. So they all radical; by Conca-Varbaro, we can read off regularity and extremal Betti numbers from the initial ideal.

Seccia (2021) proved that G is a weakly closed graph if and only if S / J_{G} is Knutson.

Knutson ideals

The key notion behind these results is Knutson ideals. Given $S=\mathbb{K}\left[x_{1}, \ldots x_{n}\right]$ and $f \in S$ such that in ${ }_{<}(f)$ is squarefree, we can construct a family of ideals from (f), taking the associated primes, their intersections, their sums, and iterating. This class is called C_{f} and its elements "Knutson ideals of f ".

Theorem (Knutson 2009 char p, Seccia 2021 char 0)

- Different Knutson ideals have different initial ideals. So Knutson ideals of f are finitely many.
- The union of the GBs of two Knutson ideals is a GB for the union.
- Knutson ideals have squarefree initial ideals. So they all radical; by Conca-Varbaro, we can read off regularity and extremal Betti numbers from the initial ideal.

Seccia (2021) proved that G is a weakly closed graph if and only if S / J_{G} is Knutson. If If Δ is semiclosed complex, S / J_{Δ} is Knutson.

Future work

Future work

- Characterize semi-closed graphs.
- Characterize semi-closed graphs.
- What other graph properties can be characterized "easily" using logic?
- Characterize semi-closed graphs.
- What other graph properties can be characterized "easily" using logic?
- Extend the unit-interval characterization to non-strongly-connected complexes; Ahmousa-Vandeborgert have a beautiful conjecture.
- Characterize semi-closed graphs.
- What other graph properties can be characterized "easily" using logic?
- Extend the unit-interval characterization to non-strongly-connected complexes; Ahmousa-Vandeborgert have a beautiful conjecture.
- Characterize Δ whose DFI is radical.
- Characterize semi-closed graphs.
- What other graph properties can be characterized "easily" using logic?
- Extend the unit-interval characterization to non-strongly-connected complexes; Ahmousa-Vandeborgert have a beautiful conjecture.
- Characterize Δ whose DFI is radical. When is S / J_{Δ} F-pure? When Knutson?
- Characterize semi-closed graphs.
- What other graph properties can be characterized "easily" using logic?
- Extend the unit-interval characterization to non-strongly-connected complexes; Ahmousa-Vandeborgert have a beautiful conjecture.
- Characterize Δ whose DFI is radical. When is S / J_{Δ} F-pure? When Knutson? (property in between semiclosed and weakly-closed).
- Characterize semi-closed graphs.
- What other graph properties can be characterized "easily" using logic?
- Extend the unit-interval characterization to non-strongly-connected complexes; Ahmousa-Vandeborgert have a beautiful conjecture.
- Characterize Δ whose DFI is radical. When is S / J_{Δ} F-pure? When Knutson? (property in between semiclosed and weakly-closed). It's not the same class: They differ for graphs (Matsouda).

