
I. Some old graph theory, with a logic perspective.
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Chordal graphs

Graphs without induced cycles of length ≥ 4.

⇔ ∃ labeling such that... for all a < b < c,

ac, bc ∈ G =⇒ ab ∈ G .

“⇐”: Pick any subcycle of length ≥ 4. Call c the highest label in
the cycle. Let a, b be the label of its neighbors in the cycle. Wlog
a < b. But then the graph must contain the chord ab.
“⇒”: By Dirac’s theorem, any graph without induced cycles of
length ≥ 4 has a simplicial vertex, i.e. a vertex such that any two
of its neighbors are connected by an edge. Label it by n. Now
G − n is chordal, so induct. �
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Chordal graphs

Graphs without induced cycles of length ≥ 4.

⇔ ∃ labeling such that... for all a < b < c,

ac, bc ∈ G =⇒ ab ∈ G .

Via Dirac’s theorem, chordal graphs can be characterized as the
graphs that are either complete, or can be obtained recursively by
joining two smaller chordal graphs whose intersection is complete.

It follows that chordal graphs can also be characterized as
intersection graphs of some subtrees of some tree.
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Weakly-closed (aka co-comparability) graphs

Intersection graphs of curves between two horizontal lines.

⇔ ∃ labeling such that... for all a < b < c,

ac ∈ G =⇒ ab ∈ G or bc ∈ G .

“⇒”: Label curves left-to-right as they touch the bottom line. If
curve 1 intersects curve 3, one of them must go across curve 2.
“⇐: By induction, G − {n} is intersection graph of n − 1 curves
between horizontal lines. Draw the last curve, and cross exactly
those curves i such that [i , n] is an edge of G . �
Complements are comparability graphs or poset drawings:

ab ∈ G and bc ∈ G =⇒ ac ∈ G .
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Weakly-closed (aka co-comparability) graphs

Intersection graphs of curves between two horizontal lines.

⇔ ∃ labeling such that... for all a < b < c,

ac ∈ G =⇒ ab ∈ G or bc ∈ G .

Fact: Weakly-closed graphs are “almost chordal”, in the sense
that they cannot contain induced cycles of length 5 or more.

Proof by contradiction: suppose an−1, an, a1, a2, a3 are distinct and
consecutive in an induced cycle, with a1 smallest. Then:
(i) a3 > an; (or else a1 < a3 < an violates the condition)
(ii) a2 < an−1; (or else a1 < an−1 < a2 violates)
(iii) if a2 < an, then by (i) a2 < an < a3 violates; if a2 > an, then
by (ii) an < a2 < a3 violates. A contradiction either way. �
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Interval graphs

Intersection graphs of open intervals in R.

⇔ ∃ labeling such that... for all a < b < c,

ac ∈ G =⇒ ab ∈ G .

‘⇒’. Swipe the real line left-to-right, label intervals as you
encounter them (= order them by leftmost endpoint).

‘⇐’. By induction, G −{n} is intersection graph of n− 1 intervals.
Figure out how to place last interval. �
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Unit-Interval graphs

Intersection graphs of open intervals of length 1 in R.

⇔ ∃ labeling such that... for all a < b < c,

ac ∈ G =⇒ ab, bc ∈ G .

‘⇒’. Swiping right-to-left, you get the reverse labeling: So also the
reverse labeling satisfies the interval condition.

‘⇐’. By induction. �
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Theorem [Bertossi 1983, HerzogEtAl 2010]

Unit-interval connected graphs are traceable.

If Hk
def
= [k , k + 1], we prove by induction that Hk ∈ G for all k < n.

H1 ∈ G : Since 1 is not isolated, [1, j ] is an edge, and so [1, 2].
Hk ∈ G : Since the subgraph on the first k vertices is connected to
the subgraph on the last n − k , there is an edge [i , j ] with i ≤ k
and j ≥ k + 1. By the unit-interval condition, [k , k + 1] is in G . �
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Theorem [Chen–Chang–Chang 1997]

Unit-interval 2-connected graphs are Hamiltonian.

The idea is to show that G contains not only all edges [k, k + 1]
but also all edges [k, k + 2]. Then e.g. if n = 9, G contains
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Cluster graphs

Disjoint unions of cliques.

⇔ ∃ labeling such that... for all a < b < c,

ac ∈ G ⇐⇒ ab, bc ∈ G .

Cluster graphs are exactly the “P3-free graphs”, i.e. the graphs
without any induced three-vertex path.

Long paths aren’t cluster, though they are unit-interval.
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Summary

CHORDAL: ∃ labeling such that... for all a < b < c,

ac, bc ∈ G =⇒ ab ∈ G .

WEAKLY-CLOSED: ∃ labeling such that... for all a < b < c,

ac ∈ G =⇒ ab ∈ G or bc ∈ G .

INTERVAL: ∃ labeling such that... for all a < b < c,

ac ∈ G =⇒ ab ∈ G .

UNIT INTERVAL: ∃ labeling such that... for all a < b < c,

ac ∈ G =⇒ ab, bc ∈ G .

CLUSTER: ∃ labeling such that... for all a < b < c,

ac ∈ G ⇐⇒ ab, bc ∈ G .

Obviously, Cl =⇒ UInt =⇒ Int =⇒ (Chordal & WClosed).
Converse of the last implication? Is it trivial?
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Gilmore-Hoffman’s theorem

Theorem (Gilmore-Hoffman, 1964)

The following are equivalent:

1 the maximal cliques of G can be ordered so that, for every
v ∈ G , the maximal cliques containing v occur consecutively;

2 if A is the incidence matrix of (maximal cliques vs. vertices),
then A is an interval matrix, i,e. up to permuting
rows/columns, every column has its 1s in consecutive rows;

3 G is an interval graph;

4 G is chordal and co-comparability;

5 G is co-comparability and has no induced 4-cycle.

For LP lovers: interval matrices A ∈ {0, 1}m×n are totally
unimodular (by induction on no. of rows). So the polytope

{x ∈ Rn such that Ax = b, x ≥ 0}

has all vertices with all cooordinates in N, for any b in Zm.
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rows/columns, every column has its 1s in consecutive rows;

3 G is an interval graph;

4 G is chordal and co-comparability;

5 G is co-comparability and has no induced 4-cycle.

For LP lovers: interval matrices A ∈ {0, 1}m×n are totally
unimodular (by induction on no. of rows). So the polytope

{x ∈ Rn such that Ax = b, x ≥ 0}

has all vertices with all cooordinates in N, for any b in Zm.
12 / 24



A new algebraic perspective:

Herzog–Hibi–Hreinsdottir–Rauh–Kahle (2009) introduced the
following correspondence:
Graph G with e edges, n vertices  binomial edge ideal

(xiyj − xjyi ) : ij is an edge in G .

with e generators in a polynomial ring of 2n variables.

Theorem (Herzog et al, 2009)

1. For any graph, this ideal is radical.

2. A graph is unit-interval ⇐⇒ the generators of its BEI form a
(squarefree) Gröbner basis.

And several exciting developments, e.g. Matsuda (2017) showed
that if a graph is weakly-closed, then the quotient by its BEI is
F-pure in characteristic p; Seccia in her thesis (2022) proved that a
graph is weakly-closed if and only if its BEI is a Knutson ideal.
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And several exciting developments, e.g. Matsuda (2017) showed
that if a graph is weakly-closed, then the quotient by its BEI is
F-pure in characteristic p; Seccia in her thesis (2022) proved that a
graph is weakly-closed if and only if its BEI is a Knutson ideal.

13 / 24



Goals for a generalization:

Hierarchy (with examples, hopefully simple and meaningful,
that show strictness for all d)?

Relation with Hamiltonian paths?

Algebraic interpretation, via determinantal facet ideals?
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II. Simplicial complexes.
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Conventions

We write d-faces by listing vertices in increasing order, i.e. if we
write F = [a0, a1, · · · , ad ], we mean a0 < a1 < . . . < ad . So
minF = a0 and maxF = ad .

The ‘gap’ of F is ad − a0 − d (it’s the number of integers between
a0 and ad missing from F ).

Hi
def
= [i , i + 1, i + 2, . . . , i + d ]. (Modulo n.)

Σd
n is the d-skeleton on the (n − 1)-dimensional simplex with

vertex set {1, . . . , n}.
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Chordal complexes

Emtander’s 2010 definition:

∃ labeling such that for each d-face F = [a0, a1, · · · , ad ] ∈ ∆...

for any facet G of ∆ with maxF = maxG , the complex ∆
contains the full d-skeleton of the simplex on the vertex set F ∪ G .

Caveat: This is not closed under taking the k- skeleton. E.g. the
2-complex with 2t vertices and t triangles
Ct = [1, 2, 3], [3, 4, 5], [5, 6, 7], . . . , [2t−3, 2t−2, 2t−1], [1, 2t−1, 2t]
is chordal because there are no two faces with same maximum.
Deleting even-labeled vertices  a length-t (induced) cycle.
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Weakly-Closed (or ‘co-comparability’) complexes

∃ labeling such that for each d-face F = [a0, a1, · · · ad ] ∈ ∆...

for every integer g /∈ F with a0 < g < ad , ∆ contains either
g ∗ [a0, . . . , ad−1] or g ∗ [a1, . . . , ad ].

Generalizes co-comparability graphs and passes to the 1-skeleton.

Theorem (BB-Seccia–Varbaro 21+)

For n ≥ 2d + 3, the d-complex of facets H1, . . . ,Hn is neither
chordal nor WC.

(Easy: The 1-skeleton isn’t WC. Also every vertex is in d + 1
facets, has 2d neighbors: If x is the vertex with highest label,
chordality ⇒ the neighbors of x form a clique. So any neighbor of
x is in ≥

(2d
d

)
facets. But d + 1 <

(2d
d

)
for d > 1.)
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Semi-Closed complexes

∃ labeling such that for each d-face F = [a0, a1, · · · ad ] ∈ ∆...

(i) either ∆ contains all d-faces G ≤ F with minG = minF ,

(ii) or ∆ contains all d-faces H ≥ F with maxH = maxF .

Implies WC; passes to the 1-skeleton. New for graphs? It says, if
15 ∈ G , then G contains either all of 12, 13, 14, or all of 25, 35, 45.

Theorem (BB-Seccia–Varbaro 21+)

For d ≥ 2, the d-complex Qd obtained taking d − 1 consecutive
cones over a square, is weakly-closed but not semi-closed.

(Harder: Q2 = 123, 125, 234, 245; Q3 = 1236, 1256, 2346, 2456;
etc., shows the weakly-closed labeling. Then by induction one
proves that for d ≥ 7, if Qd is not semi-closed, neither is Qd+1.)
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Interval (or ’under-closed’) complexes

∃ labeling such that for each d-face F = [a0, a1, · · · ad ] ∈ ∆...

∆ contains all d-faces G ≤ F with minG = minF .

Generalizes interval graphs, passes to the 1-skeleton.

Theorem (BB-Seccia–Varbaro 21+)

For d ≥ 1, Sd def
= susp(Σd−1

d ), aka the boundary of the
(d + 1)-complex of facets H1,H2, is semi-closed, but not interval.

(The given labeling assigns labels 1 and d + 3 to the apices; it’s semi-closed,

not interval. If either 1 or d + 3 is not assigned to an apex, some d-face H

contains both 1 and d + 3; were the labeling interval, the 3 facets [1, . . . , d ] ∗ i ,
i = d + 1, d + 2, d + 3, would be in Sd , a contradiction with Sd manifold.)
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Unit-interval complexes

∃ labeling such that for each d-face F = [a0, a1, · · · ad ] ∈ ∆...

∆ contains all d-faces with vertices in {a0, a0 + 1, a0 + 2, . . . , ad}.

Generalizes unit-interval graphs, passes to the 1-skeleton.
Independently, same definition: Almousa–Vandebogert.

Theorem (BB-Seccia–Varbaro 21+)

For d ≥ 1, the d-complex ∆d
k obtained taking d-cones over k

disjoint points, is interval, but not unit-interval if k ≥ 3.

(Easy: It’s interval by labeling the apices 1, 2, . . . , d . Not
unit-interval: exercise!)
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Results 1: The Hierarchy

Obviously,

unit-interval =⇒ under- =⇒ semi- =⇒ weakly-closed;

unit-interval =⇒ chordal.

All implications are strict (we have simple examples in any
dimension!).
However, no direction of Gilmore-Hoffman extends.

under-closed 6=⇒ chordal. Counterexample:

123, 124, 234, 235.

chordal + weakly-closed 6=⇒ under-closed. Counterexample:

123, 256, 345, 346, 347, 356, 456.

This labeling satisfies the semi-closed but not the chordal
condition. Another labeling satisfies chordal, but not
semi-closed:

123, 124, 134, 135, 167, 234, 246.

But no labeling satisfies both, or else it would be under-closed.
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This labeling satisfies the semi-closed but not the chordal
condition. Another labeling satisfies chordal, but not
semi-closed:

123, 124, 134, 135, 167, 234, 246.

But no labeling satisfies both, or else it would be under-closed.
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Results 2: Hamiltonian paths

A d-complex is traceable if it contains all Hi for i ≤ n − d ; it is
Hamiltonian if it contains all Hi ’s.

Theorem (BB-Seccia–Varbaro 21+)

Every unit-interval strongly-connected d-dimensional simplicial
complex is traceable.

Proof is 2 pages, but elementary: extends the idea in Herzog et al.

Theorem (BB-Seccia–Varbaro 21+)

Every unit-interval d-complex that remains strongly connected
after the deletion of d or less vertices, is Hamiltonian.

Proof: Show first that ∆ contains all faces of gap ≤ d . Then e.g.
if n = 9 and d = 2, (the dual graph of) ∆ must contain the cycle

135, 357, 579, 789, 689, 468, 246, 124, 123

which suggests how to relabel the vertices.
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Determinantal facet ideals (Ene-Herzog-Hibi-Mohammadi)

Given a pure d-complex with n vertices and f facets, build a
matrix of variables with d + 1 rows and n columns. Any facet
F = [a0, · · · , ad ] suggests a minor formed by the columns
a0, . . . , ad .The ideal generated by these minors is called
determinantal facet ideal (DFI).

Example: ∆ = 124, 145. So d = 2, n = 5. Take matrix

M =

 x01 x02 x03 x04 x05

x11 x12 x13 x14 x15

x21 x22 x23 x24 x25



124  

∣∣∣∣∣∣
x01 x02 x04

x11 x12 x14

x21 x22 x24

∣∣∣∣∣∣ , 145  

∣∣∣∣∣∣
x01 x04 x05

x11 x14 x15

x21 x24 x25

∣∣∣∣∣∣ .
Ideal generated by f polynomials, each sum of (d + 1)! squarefree
monomials of degree d + 1, in a ring with (d + 1)n variables.
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Results 3: Algebraic consequences

Bad news, known before our work:

DFIs are not always radical, e.g for ∆ = 124, 145, 234, 345
(which is weakly-closed!). This is a drawback.

Hard to manipulate: Two of the main results of Ene et al. are
incorrect, in particular the one trying to understand when the
minors form a Gröbner basis. But:

Theorem (BB-Seccia–Varbaro 21+)

The DFI of all semi-closed complexes are radical. Moreover, they
have a square-free initial ideal with respect to lex, and in
characteristic p, they are F -pure.

Theorem (BB-Seccia–Varbaro 21+)

Let ∆ be a strongly-connected d-complex.
∆ is unit-interval ⇐⇒ ∆ is traceable and with respect to the same
labeling, the generators of its DFI form a Gröbner basis wrt lex.
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minors form a Gröbner basis. But:

Theorem (BB-Seccia–Varbaro 21+)

The DFI of all semi-closed complexes are radical. Moreover, they
have a square-free initial ideal with respect to lex, and in
characteristic p, they are F -pure.

Theorem (BB-Seccia–Varbaro 21+)

Let ∆ be a strongly-connected d-complex.
∆ is unit-interval ⇐⇒ ∆ is traceable and with respect to the same
labeling, the generators of its DFI form a Gröbner basis wrt lex.
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Knutson ideals

The key notion behind these results is Knutson ideals. Given
S = K[x1, . . . xn] and f ∈ S such that in<(f ) is squarefree, we can
construct a family of ideals from (f ), taking the associated primes,
their intersections, their sums, and iterating. This class is called Cf

and its elements “Knutson ideals of f ”.

Theorem (Knutson 2009 char p, Seccia 2021 char 0)

Different Knutson ideals have different initial ideals. So
Knutson ideals of f are finitely many.

The union of the GBs of two Knutson ideals is a GB for the
union.

Knutson ideals have squarefree initial ideals. So they all
radical; by Conca-Varbaro, we can read off regularity and
extremal Betti numbers from the initial ideal.

Seccia (2021) proved that G is a weakly closed graph if and only if
S/JG is Knutson. If If ∆ is semiclosed complex, S/J∆ is Knutson.
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Future work

Characterize semi-closed graphs.

What other graph properties can be characterized “easily”
using logic?

Extend the unit-interval characterization to
non-strongly-connected complexes; Ahmousa-Vandeborgert
have a beautiful conjecture.

Characterize ∆ whose DFI is radical. When is S/J∆ F-pure?
When Knutson? (property in between semiclosed and
weakly-closed). It’s not the same class: They differ for graphs
(Matsouda).
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