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Geometry and topology of biomolecules

Gramicidin (an antibiotic functioning as an ion channel)
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DeBnition
Let X be a topological space, and let U = (Ui)i∈I be a cover of X.
The nerve of U is the simplicial complex

Nrv(U) = {J ⊆ I ∣ ∣J∣ < ∞ and ⋂
i∈J

Ui ≠ ∅} .

Theorem (Borsuk 1948, and many more)
LetU be a good cover ofX. ThenNrv(U) is homotopy equivalent toX.

Here good can mean di>erent things:

● open, numerable cover, contractible intersections

● closed, compact, and convex Bnite cover

U. Bauer, M. Kerber, F. Roll, and A. Rolle

A UniBed View on the Functorial Nerve Theorem and its Variations
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Discrete Morse theory

Theorem (Forman 1998)
A simplicial complex with a discrete Morse function f is homotopy

equivalent to a CW complex build from the critical simplices of f .
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sublevel sets:
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Generalized discrete Morse theory

DeBnition (Forman 1996, Chari 2000, Freij 2009)
A generalized discrete vector Beld on a simplicial complex K
is a partition of the simplices into intervals of the face poset:

[L,U] = {Q ∣ L ⊆ Q ⊆ U}

● indicated by an arrow from L to U

A generalized discrete Morse function f ∶ K → R satisBes:

● the sublevel sets Kt = f −1(−∞, t]
are subcomplexes (for all t ∈ R)

5
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3

1● the level sets f −1(t) form a generalized
vector Beld (the discrete gradient of f )

9 / 58



Generalized discrete Morse theory

DeBnition (Forman 1996, Chari 2000, Freij 2009)
A generalized discrete vector Beld on a simplicial complex K
is a partition of the simplices into intervals of the face poset:

[L,U] = {Q ∣ L ⊆ Q ⊆ U}

● indicated by an arrow from L to U

A generalized discrete Morse function f ∶ K → R satisBes:

● the sublevel sets Kt = f −1(−∞, t]
are subcomplexes (for all t ∈ R)

5
4

2

3

1● the level sets f −1(t) form a generalized
vector Beld (the discrete gradient of f )

9 / 58



ReBning generalized vector Belds

A generalized vector Beld V can be reBned
to a vector Beld.
For each non-critical face interval [L,U] ∈ V :

● choose an arbitrary vertex x ∈ U ∖ L
● partition [L,U] into pairs

(Q ∖ {x},Q ∪ {x}) for all Q ∈ [L,U].
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Morse theory for Čech and Delaunay complexes

Proposition (B, Edelsbrunner 2014)
The Čech complexes and the Delaunay complexes (alpha shapes) are

sublevel sets of (generalized) discrete Morse functions.

Theorem (B., Edelsbrunner 2017)
Čech, Delaunay, andWrap complexes are related by collapses

Cechr X ↘ Delr X ↘ Wrapr X,

encoded by a single discrete gradient Beld.
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Delaunay and Wrap complexes
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Homology inference



Inferring homology from samples

Given: Bnite sample P ⊂ X of unknown shape X ⊂ Rd

Problem (Homology inference)
Determine the homologyH∗(X).

Problem (Homological reconstruction)
Construct a shape RwithH∗(R) ≅ H∗(X).

Approach:

● approximate X by a thickening Pδ = ⋃
p∈P

Bδ(p) that covers X

This can work, but requires strong assumptions:
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Homology reconstruction by thickening

Theorem (Niyogi, Smale, Weinberger 2006)
LetX be a submanifold of Rd

. Let P ⊂ X and δ > 0 be such that

● Pδ coversX, and

● δ <
√
3/20 reach(X).

ThenH∗(X) ≅ H∗(P2δ).
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Homology inference using persistence
Theorem (Cohen-Steiner, Edelsbrunner, Harer 2005)
LetX ⊂ Rd

. Let P ⊂ X and δ > 0 be such that

● Pδ coversX,

● the inclusionsX ↪ Xδ ↪ X2δ of thickenings induce isomorphisms

in homology.

ThenH∗(X) ≅ imH∗(Pδ ↪ P2δ).

Proof.

H∗(

X

) H∗(

Xδ

) H∗(

X2δ

)

H∗(

Pδ

) H∗(

P2δ

)

imH∗(Pδ ↪ P2δ)
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What is persistent homology?

Persistent homology is the homology of a Bltration.

● A Bltration is a certain diagram K ∶ R→ Top of topological
spaces, indexed over the poset of real numbers R ∶= (R, ≤)

Ks Kt

● a topological space Kt for each t ∈ R
● an inclusion map Ks ↪ Kt for each s ≤ t ∈ R

● Apply homologyH∗ ∶ Top→ Vect
● Persistent homology is a diagram M = H∗ ○ K ∶ R→ Vect

(persistence module):

Ms Mt

17 / 58



What is persistent homology?

Persistent homology is the homology of a Bltration.

● A Bltration is a certain diagram K ∶ R→ Top of topological
spaces, indexed over the poset of real numbers R ∶= (R, ≤)

Ks Kt

● a topological space Kt for each t ∈ R
● an inclusion map Ks ↪ Kt for each s ≤ t ∈ R

● Apply homologyH∗ ∶ Top→ Vect
● Persistent homology is a diagram M = H∗ ○ K ∶ R→ Vect

(persistence module):

Ms Mt

17 / 58



What is persistent homology?

Persistent homology is the homology of a Bltration.

● A Bltration is a certain diagram K ∶ R→ Top of topological
spaces, indexed over the poset of real numbers R ∶= (R, ≤)

Ks Kt

● a topological space Kt for each t ∈ R
● an inclusion map Ks ↪ Kt for each s ≤ t ∈ R

● Apply homologyH∗ ∶ Top→ Vect
● Persistent homology is a diagram M = H∗ ○ K ∶ R→ Vect

(persistence module):

Ms Mt

17 / 58



What is persistent homology?

Persistent homology is the homology of a Bltration.

● A Bltration is a certain diagram K ∶ R→ Top of topological
spaces, indexed over the poset of real numbers R ∶= (R, ≤)

Ks Kt

● a topological space Kt for each t ∈ R
● an inclusion map Ks ↪ Kt for each s ≤ t ∈ R

● Apply homologyH∗ ∶ Top→ Vect

● Persistent homology is a diagram M = H∗ ○ K ∶ R→ Vect
(persistence module):

Ms Mt

17 / 58



What is persistent homology?

Persistent homology is the homology of a Bltration.

● A Bltration is a certain diagram K ∶ R→ Top of topological
spaces, indexed over the poset of real numbers R ∶= (R, ≤)

Ks Kt

● a topological space Kt for each t ∈ R
● an inclusion map Ks ↪ Kt for each s ≤ t ∈ R

● Apply homologyH∗ ∶ Top→ Vect
● Persistent homology is a diagram M = H∗ ○ K ∶ R→ Vect

(persistence module):

Ms Mt

17 / 58



18 / 58



18 / 58



Barcodes: the structure of persistence modules
Theorem (Crawley-Boevey 2015)
Any persistence moduleM ∶ R→ vect (of Bnite dim. vector spaces over

some BeldF) decomposes as a direct sum of interval modules

→ ⋅ ⋅ ⋅ → 0→ F→ ⋅ ⋅ ⋅ → F→ 0→ ⋅ ⋅ ⋅ →

(in an essentially unique way).

● The supporting intervals form the persistence barcode.

0.1 0.2 0.4 0.8
δ
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Computation



Homology by matrix reduction

Notation:

● D: boundary matrix (with Z2 coe?cients)

● Ri: ith column of matrix R
● pivotRi: maximal row index with nonzero entry in column Ri

Matrix reduction algorithm (variant of Gaussian elimination):

● R = D,V = I
● while ∃i < jwith pivotRi = pivotRj

● add Ri to Rj , add Vi to Vj

Result:

● R = D ⋅V is reduced (each column has a unique pivot)

● V is full rank upper triangular
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Persistent homology by matrix reduction

1 2 3 4 5 6 7

1 2 3 4 5 6 7
1 1 1
2 1 1
3 1
4 1 1
5 1
6 1
7
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

R

= D ⋅

1 2 3 4 5 6 7
1 1
2 1
3 1
4 1
5 1
6 1
7 1
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V

Algorithm:
● while ∃i < jwith pivotRi = pivotRj

● add Ri to Rj , add Vi to Vj
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Stability



Stability of persistence barcodes for functions

Theorem (Cohen-Steiner, Edelsbrunner, Harer 2005)
Let f , g ∶ X → Rwith ∥f − g∥∞ = δ (and some regularity assumptions).

● Consider the sublevel set Bltrations f −1(∞, t] and g−1(∞, t], and

● take the resulting persistence barcodes.

Then there exists a δ-matching between the barcodes, meaning that:

● matched intervals have endpoints within distance ≤ δ, and

● unmatched intervals have length ≤ 2δ.
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Persistence and stability: the big picture

Data point cloud P ⊂ Rd

Geometry function f ∶ Rd → R

Topology topological spaces (Bltration) K ∶ R→ Top

Algebra vector spaces (persistence module) M ∶ R→ Vect

Combinatorics intervals (persistence barcode) B ∶ R→Mch
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Interleavings
Let δ = ∥f − g∥∞. Write Ft = f −1(−∞, t] for the t-sublevel set of f .

Then the sublevel set Bltrations F,G ∶ R→ Top are δ-interleaved:

Ft−δ Ft Ft+δ

Gt−δ Gt Gt+δ

∀t ∈ R.

Applying homology, the persistence modules
H∗(F),H∗(G) ∶ R→ Vect are δ-interleaved:

H∗(Ft−δ) H∗(Ft) H∗(Ft+δ)

H∗(Gt−δ) H∗(Gt) H∗(Gt+δ)

∀t ∈ R.
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Algebraic stability of persistence barcodes

Theorem (Chazal et al. 2009, 2012; B, Lesnick 2015)
If two persistence modules are δ-interleaved,

then there exists a δ-matching of their barcodes.
δ

2δ
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Structure of persistence sub-/quotient modules

Proposition (B, Lesnick 2015)
LetM↠ N be an epimorphism of persistence modules.

Then there is an injection of barcodes B(N) ↪ B(M) such that

if J is mapped to I, then

● I and J are aligned below, and

● I bounds J above.

This construction is functorial.

Dually, there is an injection B(M) ↪ B(N) for monomorphisms
M ↪ N.
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Induced matchings

For f ∶M → N a general morphism of pfd persistence modules, the
epi-mono factorization

M↠ im f ↪ N

gives an induced matching between their barcodes:

● compose the injections B(M) ↩ B(im f ) ↪ B(N) from before
to a matching B(M) ↛ B(N)

B(M)I
B(im f )
B(N)J

If f is a δ-interleaving morphism, then this is a δ-matching.
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SimpliBcation



Topological simpliBcation of functions

Consider the following problem:

Problem (Topological simpliBcation)
Given a function f and a real number δ ≥ 0, Bnd a function fδ with the

minimal number of critical points subject to ∥fδ − f ∥∞ ≤ δ.
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Persistence and Morse theory
Morse theory (smooth or discrete):
● Relates critical points to homology of sublevel sets
● Provides a method for canceling pairs of critical points

(fromMilnor: Lectures on the h-cobordism theorem, 1965)

Persistent homology:
● Relates homology of di>erent sublevel set
● IdentiBes pairs of critical points (birth and death of homology)
and quantiBes their persistence
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Combining persistence and Morse theory

For a Morse function:

● critical points correspond to endpoints of barcode intervals

By stability of persistence barcodes:

Proposition
The critical points of f with persistence > 2δ provide a lower bound on

the number of critical points of any function g with ∥g − f ∥∞ ≤ δ.

Theorem (B, Lange, Wardetzky, 2011)
Let f be a function on a surface and let δ > 0.

Canceling all pairs with persistence ≤ 2δ yields a function fδ
● satisfying ∥fδ − f ∥∞ ≤ δ and

● achieving the lower bound on the number of critical points.

Does not generalize to higher-dimensional manifolds!

31 / 58



Combining persistence and Morse theory

For a Morse function:

● critical points correspond to endpoints of barcode intervals

By stability of persistence barcodes:

Proposition
The critical points of f with persistence > 2δ provide a lower bound on

the number of critical points of any function g with ∥g − f ∥∞ ≤ δ.

Theorem (B, Lange, Wardetzky, 2011)
Let f be a function on a surface and let δ > 0.

Canceling all pairs with persistence ≤ 2δ yields a function fδ
● satisfying ∥fδ − f ∥∞ ≤ δ and

● achieving the lower bound on the number of critical points.

Does not generalize to higher-dimensional manifolds!

31 / 58



Combining persistence and Morse theory

For a Morse function:

● critical points correspond to endpoints of barcode intervals

By stability of persistence barcodes:

Proposition
The critical points of f with persistence > 2δ provide a lower bound on

the number of critical points of any function g with ∥g − f ∥∞ ≤ δ.

Theorem (B, Lange, Wardetzky, 2011)
Let f be a function on a surface and let δ > 0.

Canceling all pairs with persistence ≤ 2δ yields a function fδ
● satisfying ∥fδ − f ∥∞ ≤ δ and

● achieving the lower bound on the number of critical points.

Does not generalize to higher-dimensional manifolds!

31 / 58



Combining persistence and Morse theory

For a Morse function:

● critical points correspond to endpoints of barcode intervals

By stability of persistence barcodes:

Proposition
The critical points of f with persistence > 2δ provide a lower bound on

the number of critical points of any function g with ∥g − f ∥∞ ≤ δ.

Theorem (B, Lange, Wardetzky, 2011)
Let f be a function on a surface and let δ > 0.

Canceling all pairs with persistence ≤ 2δ yields a function fδ
● satisfying ∥fδ − f ∥∞ ≤ δ and

● achieving the lower bound on the number of critical points.

Does not generalize to higher-dimensional manifolds!

31 / 58



Functional topology



When was persistent homology discovered?

H. Edelsbrunner, D. Letscher, and A. Zomorodian
Topological persistence and simpliBcation
Foundations of Computer Science, 2000

V. Robbins
Computational Topology at Multiple Resolutions.
PhD thesis, University of Colorado Boulder, 2000

P. Frosini
A distance for similarity classes of submanifolds of a Euclidean
space
Bulletin of the AustralianMathematical Society, 1990.

S. A. Barannikov.
The framed Morse complex and its invariants.
In Singularities and bifurcations, Adv. Soviet Math. (vol. 21), 1994.
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When was persistent homology discovered Brst?
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Motivation and application: minimal surfaces
Problem (Plateau’s problem)
Find an immersed disk of least area spanned by a given closed Jordan

curve.

(from Dierkes et al.: Minimal Surfaces, 2010)

Solution by Douglas (1930):
● identiBes minimal surfaces with critical points of the Douglas

functional
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Existence of unstable minimal surfaces

Theorem (Morse, Tompkins 1939; Shi>man 1939)
Assume that a given curve bounds two separate stable minimal surfaces.

Then there also exists an unstable minimal surface bounding that curve

(a critical point that is not a local minimum).
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Q-tame persistence modules

DeBnition (Chazal et al. 2009)
A persistence module M ∶ R→ vect is q-tame if for every s < t the
structure map Ms →Mt has Bnite rank.

● A q-tame persistence module
● does not necessarily admit a barcode,
● but has a submodule at distance 0 that admits a barcode.

● Morse’s goal, in modern language:
● Su?cient conditions for sublevel sets to have q-tame

persistence,
● which are satisBed by the minimal surface functional
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Q-tameness from local connectivity

Theorem (Morse, 1937)
If a function f ∶X → R on ametric spaceX is bounded below and

the sublevel set Bltration is compact andweakly locally connected,

then it has q-tame persistent Vietoris homology.
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Q-tameness from local connectivity

Theorem (Morse, 1937; incorrect)
If a function f ∶X → R on ametric spaceX is bounded below and

the sublevel set Bltration is compact andweakly locally connected,

then it has q-tame persistent Vietoris homology.
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Homologically locally small Bltrations

DeBnition
The sublevel set Bltration of a function f ∶X → R is homologically

locally connected (HLC) if

● for any point x ∈ X, any values f (x) < s < t, and

● any neighborhood V of x in the sublevel set f −1(−∞, t],
there is

● a neighborhood U ⊆ V of x in the sublevel set f −1(−∞, s]
such that the inclusion U ↪ V induces a zero map on homology.
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A su?cient condition for q-tame persistence

Theorem (B, Medina-Mardones, Schmahl 2021)
If the sublevel sets of a function f ∶X → R are compact and HLC, then

their persistent homology is q-tame.

● f is not required to be continuous

● Conditions are satisBed by the Douglas functional

● Fixes the gap in Morse/Tompkins’ proof
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Persistence of Vietoris–Rips
complexes



Vietoris–Rips complexes
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Vietoris–Rips complexes

For a metric space X, the Vietoris–Rips complex at scale t > 0 is the
simplicial complex

Ripst(X) = {S ⊆ X ∣ S ≠ ∅ Bnite, diam S ≤ t}.
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An example computation
Example data set:

● 192 points on S2

● homology up to dimension 2: over 56 mio. simplices in
3-skeleton

Some previous software:

● javaplex (Stanford): 3200 seconds, 12 GB

● Dionysus (Duke): 615 seconds, 3.4 GB

● DIPHA (IST Austria): 50 seconds, 6 GB

● GUDHI (INRIA): 60 seconds, 3 GB

Current state of the art:

● Ripser: 0.72 seconds, 83 MB

● try live.ripser.org
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Apparent pairs:

Ripser uses the following construction for a computational shortcut:

DeBnition
In a simplexwise Bltration (Ki = {σ1, . . . , σi})i, a pair of simplices
(σ , τ) is an apparent pair if

● σ is the latest proper face of τ, and

● τ is the earliest proper coface of σ .

Proposition
The apparent pairs form a discrete gradient.

Proposition
The apparent pairs form persistence pairs: the cycle ∂τ gives rise to an

interval [f (σ), f (τ)) in the persistence barcode.
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The diameter-lexicographic Bltration

We use the lexicographic reBnement of the Vietoris–Rips Bltration:

● Choose a total order on the vertices

● Order simplices by diameter

● Order simplices with same diameter by lexicographic vertex
order
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Topology of viral evolution

Joint work with: A. Ott, M. Bleher, L. Hahn (Heidelberg), R. Rabadan, J. Patiño-Galindo

(Columbia), M. Carrière (INRIA)

Observation: Ripser runs unusually fast on genetic distance data

● SARS-CoV2 spike protein: 25556 data points (2.8 × 1012 simplices
for H1)

Can we make it run even faster?
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The Rips Contractibility Lemma

Theorem (Rips; Gromov 1988)
LetX be a δ-hyperbolic geodesic metric space. ThenRipst(X) is

contractible for all t ≥ 4δ.

● What about non-geodesic spaces?

● In particular, Bnite metric spaces?

● Connection to Ripser?

46 / 58



Gromov-hyperbolicity

DeBnition (Gromov 1988)
Ametric space X is δ-hyperbolic if for all w, x, y, z ∈ X we have

d(w, x) + d(y, z) ≤ max{d(w, y) + d(x, z), d(w, z) + d(x, y)} + 2δ.
y

w

z

x

● The hyperbolic plane is ln 2-hyperbolic

● 0-hyperbolic spaces are subspaces of trees
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Rips contractibility for non-geodesic spaces

Theorem (B, Roll 2021)
LetX be a Bnite δ-hyperbolic space. Then there is a discrete gradient

encoding the collapses

Ripsu(X) ↘ Ripst(X) ↘ {∗}

for all u > t ≥ 4δ + 2ν, where ν is the geodesic defect ofX.
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Geodesic defect

DeBnition (Bonk, Schramm 2000)
Ametric space X is ν-geodesic if for all points x, y ∈ X and all r, s ≥ 0
with r + s = d(x, y)we have

Br+ν(x) ∩ Br+ν(y) ≠ ∅.

We call the inBmum of all such ν the geodesic defect of X.
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Bounds on the geodesic defect

ν: geodesic defect of Bnite (X, d)
● lower bound:

ν ≥ 1
2
min
x≠y∈X d(x, y)

● upper bound:
ν ≤ dH(X,Z)

for X ⊆ Z an ambient geodesic space

Possible ambient spaces for X:
● ℓ∞(X) (functions X → R)

● Kuratowski embedding e∶X → ℓ∞(X), x ↦ (dx = d(x,−)∶X → R

● injective hull (tight span): subspace of ℓ∞(X)
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The tight span of a metric space
Given a metric space (X, d), the injective hull is

E(X) = {f ∶X → R ∣ f (x) + f (y) ≥ d(x, y), f (x) = sup
y∈X

(d(x, y) − f (y))},

equipped with the metric induced by the sup-norm.

Properties:

● geodesic

● hyperconvex (metric balls have the Helly property)

● injective (in the category of metric spaces)
[Aronszain–Panichpakdi 1956]

● contains the Kuratowski embedding e(X)∶ x ↦ dx
● minimal space with above properties

● contractible [Isbell 1962]
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Density of Kuratowski embedding

Theorem (Lang 2013 + є)
LetX be a δ-hyperbolic ν-geodesic metric space. Then the injective hull

E(X) is δ-hyperbolic, and every point in E(X) has distance at most

2δ + ν to e(X).

Corollary (Lim, Mémoli, Okutan 2020 + є)
Ripst(X) is contractible for all t > 4δ + 2ν.

Proof outline.
● Ripst(X) = Cechr(e(X), E(X)) (hyperconvexity)

● For r > 2δ + ν: (Br(x))x∈e(X) is a good cover of E(X) (density)

● Cechr(e(X), E(X)) ≃ E(X) (nerve theorem)

● E(X) ≃ {∗} (contractibility)
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Collapsing Vietoris–Rips complexes of generic trees
Consider a generic Bnite metric tree T = (V , E) (distinct distances).

● diam∶ 2V → R is a generalized discrete Morse function.
● The discrete gradient has the non-critical intervals [e, ∆e], where

● e ∈ (V2) ∖ E is any non-tree edge
● ∆e is the unique maximal cofaces with diam∆e = l(e)

● Only vertices V and edges E are critical

Corollary (B, Roll 2021)
The discrete gradient induces collapses

Ripst(X) ↘ Tt for all t ∈ R,with

Ripst(X) ↘ T ↘ {∗} for all t ≥ max l(E), and

Ripsu(X) ↘ Ripst(X) for all (t, u] ∩ l(E) = ∅.

In particular, the persistent homology is trivial in degrees > 0.
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Arbitrary tree metrics

Example: phylogenetic trees

● non-generic tree metric

● diam is not a generalized discrete Morse function

There is still a compatible gradient:

● independent of choices (canonical gradient)

● for generic trees: equals the diam gradient

● only V , E critical

● induces the same collapses
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Symbolic perturbation
Tie breaking for non-distinct pairwise distances:

● Choose total order on vertices

● Order edges lexicographically

● Perturb metric symbolically w.r.t. edge order

This results in a gradient structure like a generic tree metric
b

a
c

d

● The canonical gradient (from the previous slide) reBnes the
perturbed gradient (for any choice of total order)

● Hence, the perturbed gradient induces the same collapses
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Collapsing Rips complexes of trees with apparent pairs
Let X be the path length metric spaces for a weighted tree T = (X, E).
● Choose a root and extend the tree order to a total order.

Theorem (B, Roll 2021)
The apparent pairs gradient has critical simplices only on the tree T.

It induces the collapses

Ripsu(X) ↘ Ripst(X) ↘ Tt

for all u > t such that no tree edge e ∈ E has length l(e) ∈ (t, u].
b

a
c

d

● Explains why Ripser is very fast on genetic distances (tree-like)
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