Complexes from point clouds

Geometry, topology, algebra, and combinatorics

Ulrich Bauer

TUM

Mar 22, 2022

Combinatorial Coworkspace 2022

$$
0
$$

Geometry and topology of biomolecules

Gramicidin (an antibiotic functioning as an ion channel)

Geometry and topology of biomolecules

Gramicidin (an antibiotic functioning as an ion channel)

Čech complexes

Čech complexes

Čech complexes

Čech complexes

Čech complexes

Čech complexes

Čech complexes

Definition

Let X be a topological space, and let $\mathcal{U}=\left(U_{i}\right)_{i \in I}$ be a cover of X. The nerve of \mathcal{U} is the simplicial complex

$$
\operatorname{Nrv}(\mathcal{U})=\left\{J \subseteq I| | J \mid<\infty \text { and } \bigcap_{i \in J} U_{i} \neq \varnothing\right\}
$$

Definition

Let X be a topological space, and let $\mathcal{U}=\left(U_{i}\right)_{i \in I}$ be a cover of X.
The nerve of \mathcal{U} is the simplicial complex

$$
\operatorname{Nrv}(\mathcal{U})=\left\{J \subseteq I| | J \mid<\infty \text { and } \bigcap_{i \in J} U_{i} \neq \varnothing\right\}
$$

Theorem (Borsuk 1948, and many more)
Let \mathcal{U} be a good cover of X. Then $\operatorname{Nrv}(\mathcal{U})$ is homotopy equivalent to X.

Definition

Let X be a topological space, and let $\mathcal{U}=\left(U_{i}\right)_{i \in I}$ be a cover of X.
The nerve of \mathcal{U} is the simplicial complex

$$
\operatorname{Nrv}(\mathcal{U})=\left\{J \subseteq I| | J \mid<\infty \text { and } \bigcap_{i \in J} U_{i} \neq \varnothing\right\}
$$

Theorem (Borsuk 1948, and many more)

Let \mathcal{U} be a good cover of X. Then $\operatorname{Nrv}(\mathcal{U})$ is homotopy equivalent to X.
Here good can mean different things:

- open, numerable cover, contractible intersections
- closed, compact, and convex finite cover

Definition

Let X be a topological space, and let $\mathcal{U}=\left(U_{i}\right)_{i \in I}$ be a cover of X.
The nerve of \mathcal{U} is the simplicial complex

$$
\operatorname{Nrv}(\mathcal{U})=\left\{J \subseteq I| | J \mid<\infty \text { and } \bigcap_{i \in J} U_{i} \neq \varnothing\right\}
$$

Theorem (Borsuk 1948, and many more)

Let \mathcal{U} be a good cover of X. Then $\operatorname{Nrv}(\mathcal{U})$ is homotopy equivalent to X.
Here good can mean different things:

- open, numerable cover, contractible intersections
- closed, compact, and convex finite cover
(R. U. Bauer, M. Kerber, F. Roll, and A. Rolle

A Unified View on the Functorial Nerve Theorem and its Variations
Preprint, arXiv:2203.03571, 2022

Delaunay complexes

$$
\bullet \quad \bullet \quad \bullet \quad \bullet \quad \bullet
$$

Delaunay complexes

Delaunay complexes

Discrete Morse theory

Discrete Morse theory

Discrete Morse theory

Theorem (Forman 1998)

A simplicial complex with a discrete Morse function f is homotopy equivalent to a CW complex build from the critical simplices of f.

Discrete Morse theory

Theorem (Forman 1998)

A simplicial complex with a discrete Morse function f is homotopy equivalent to a CW complex build from the critical simplices of f.

Discrete Morse functions - and their gradients - encode collapses of sublevel sets:

Discrete Morse theory

Theorem (Forman 1998)

A simplicial complex with a discrete Morse function f is homotopy equivalent to a CW complex build from the critical simplices of f.

Discrete Morse functions - and their gradients - encode collapses of sublevel sets:

Generalized discrete Morse theory

Definition (Forman 1996, Chari 2000, Freij 2009)

A generalized discrete vector field on a simplicial complex K is a partition of the simplices into intervals of the face poset:

$$
[L, U]=\{Q \mid L \subseteq Q \subseteq U\}
$$

- indicated by an arrow from L to U

Generalized discrete Morse theory

Definition (Forman 1996, Chari 2000, Freij 2009)

A generalized discrete vector field on a simplicial complex K
is a partition of the simplices into intervals of the face poset:

$$
[L, U]=\{Q \mid L \subseteq Q \subseteq U\}
$$

- indicated by an arrow from L to U

A generalized discrete Morse function $f: K \rightarrow \mathbb{R}$ satisfies:

- the sublevel sets $K_{t}=f^{-1}(-\infty, t]$ are subcomplexes (for all $t \in \mathbb{R}$)
- the level sets $f^{-1}(t)$ form a generalized
 vector field (the discrete gradient of f)

Refining generalized vector fields

A generalized vector field V can be refined to a vector field.
For each non-critical face interval $[L, U] \in V$:

Refining generalized vector fields

A generalized vector field V can be refined to a vector field.
For each non-critical face interval $[L, U] \in V$:

- choose an arbitrary vertex $x \in U \backslash L$

Refining generalized vector fields

A generalized vector field V can be refined to a vector field.
For each non-critical face interval $[L, U] \in V$:

- choose an arbitrary vertex $x \in U \backslash L$
- partition $[L, U]$ into pairs

$$
(Q \backslash\{x\}, Q \cup\{x\}) \text { for all } Q \in[L, U] .
$$

Morse theory for Čech and Delaunay complexes

Proposition (B, Edelsbrunner 2014)

The Čech complexes and the Delaunay complexes (alpha shapes) are sublevel sets of (generalized) discrete Morse functions.

Morse theory for Čech and Delaunay complexes

Proposition (B, Edelsbrunner 2014)

The Čech complexes and the Delaunay complexes (alpha shapes) are sublevel sets of (generalized) discrete Morse functions.

Theorem (B., Edelsbrunner 2017)

Čech, Delaunay, and Wrap complexes are related by collapses

$$
\operatorname{Cech}_{r} X \searrow \operatorname{Del}_{r} X \searrow \operatorname{Wrap}_{r} X,
$$

encoded by a single discrete gradient field.

Delaunay and Wrap complexes

Delaunay and Wrap complexes

Homology inference

Inferring homology from samples

Given: finite sample $P \subset X$ of unknown shape $X \subset \mathbb{R}^{d}$
Problem (Homology inference)
Determine the homology $H_{*}(X)$.

Inferring homology from samples

Given: finite sample $P \subset X$ of unknown shape $X \subset \mathbb{R}^{d}$
Problem (Homology inference)
Determine the homology $H_{*}(X)$.

Problem (Homological reconstruction)
Construct a shape R with $H_{*}(R) \cong H_{*}(X)$.

Inferring homology from samples

Given: finite sample $P \subset X$ of unknown shape $X \subset \mathbb{R}^{d}$
Problem (Homology inference)
Determine the homology $H_{*}(X)$.

Problem (Homological reconstruction)
Construct a shape R with $H_{*}(R) \cong H_{*}(X)$.
Approach:

- approximate X by a thickening $P_{\delta}=\bigcup_{p \in P} B_{\delta}(p)$ that covers X

Inferring homology from samples

Given: finite sample $P \subset X$ of unknown shape $X \subset \mathbb{R}^{d}$
Problem (Homology inference)
Determine the homology $H_{*}(X)$.

Problem (Homological reconstruction)

Construct a shape R with $H_{*}(R) \cong H_{*}(X)$.
Approach:

- approximate X by a thickening $P_{\delta}=\bigcup_{p \in P} B_{\delta}(p)$ that covers X

This can work, but requires strong assumptions:

Homology reconstruction by thickening

Theorem (Niyogi, Smale, Weinberger 2006)
Let X be a submanifold of \mathbb{R}^{d}. Let $P \subset X$ and $\delta>0$ be such that

- P_{δ} covers X, and
- $\delta<\sqrt{3 / 20} \operatorname{reach}(X)$.

Then $H_{*}(X) \cong H_{*}\left(P_{2 \delta}\right)$.

Homology reconstruction by thickening

Theorem (Niyogi, Smale, Weinberger 2006)
Let X be a submanifold of \mathbb{R}^{d}. Let $P \subset X$ and $\delta>0$ be such that

- P_{δ} covers X, and
- $\delta<\sqrt{3 / 20} \operatorname{reach}(X)$.

Then $H_{*}(X) \cong H_{*}\left(P_{2 \delta}\right)$.

Homology reconstruction by thickening

Theorem (Niyogi, Smale, Weinberger 2006)
Let X be a submanifold of \mathbb{R}^{d}. Let $P \subset X$ and $\delta>0$ be such that

- P_{δ} covers X, and
- $\delta<\sqrt{3 / 20} \operatorname{reach}(X)$.

Then $H_{*}(X) \cong H_{*}\left(P_{2 \delta}\right)$.

Homology reconstruction by thickening

Theorem (Niyogi, Smale, Weinberger 2006)
Let X be a submanifold of \mathbb{R}^{d}. Let $P \subset X$ and $\delta>0$ be such that

- P_{δ} covers X, and
- $\delta<\sqrt{3 / 20} \operatorname{reach}(X)$.

Then $H_{*}(X) \cong H_{*}\left(P_{2 \delta}\right)$.

Homology reconstruction by thickening

Theorem (Niyogi, Smale, Weinberger 2006)
Let X be a submanifold of \mathbb{R}^{d}. Let $P \subset X$ and $\delta>0$ be such that

- P_{δ} covers X, and
- $\delta<\sqrt{3 / 20} \operatorname{reach}(X)$.

Then $H_{*}(X) \cong H_{*}\left(P_{2 \delta}\right)$.

Homology reconstruction by thickening

Theorem (Niyogi, Smale, Weinberger 2006)
Let X be a submanifold of \mathbb{R}^{d}. Let $P \subset X$ and $\delta>0$ be such that

- P_{δ} covers X, and
- $\delta<\sqrt{3 / 20} \operatorname{reach}(X)$.

Then $H_{*}(X) \cong H_{*}\left(P_{2 \delta}\right)$.

Homology reconstruction by thickening

Theorem (Niyogi, Smale, Weinberger 2006)
Let X be a submanifold of \mathbb{R}^{d}. Let $P \subset X$ and $\delta>0$ be such that

- P_{δ} covers X, and
- $\delta<\sqrt{3 / 20} \operatorname{reach}(X)$.

Then $H_{*}(X) \cong H_{*}\left(P_{2 \delta}\right)$.

Homology reconstruction by thickening

Theorem (Niyogi, Smale, Weinberger 2006)
Let X be a submanifold of \mathbb{R}^{d}. Let $P \subset X$ and $\delta>0$ be such that

- P_{δ} covers X, and
- $\delta<\sqrt{3 / 20} \operatorname{reach}(X)$.

Then $H_{*}(X) \cong H_{*}\left(P_{2 \delta}\right)$.

Homology reconstruction by thickening

Theorem (Niyogi, Smale, Weinberger 2006)
Let X be a submanifold of \mathbb{R}^{d}. Let $P \subset X$ and $\delta>0$ be such that

- P_{δ} covers X, and
- $\delta<\sqrt{3 / 20}$ reach (X).

Then $H_{*}(X) \cong H_{*}\left(P_{2 \delta}\right)$.

Homology reconstruction by thickening

Theorem (Niyogi, Smale, Weinberger 2006)
Let X be a submanifold of \mathbb{R}^{d}. Let $P \subset X$ and $\delta>0$ be such that

- P_{δ} covers X, and
- $\delta<\sqrt{3 / 20} \operatorname{reach}(X)$.

Then $H_{*}(X) \cong H_{*}\left(P_{2 \delta}\right)$.

Homology reconstruction by thickening

Theorem (Niyogi, Smale, Weinberger 2006)
Let X be a submanifold of \mathbb{R}^{d}. Let $P \subset X$ and $\delta>0$ be such that

- P_{δ} covers X, and
- $\delta<\sqrt{3 / 20}$ reach (X).

Then $H_{*}(X) \cong H_{*}\left(P_{2 \delta}\right)$.

Homology reconstruction by thickening

Theorem (Niyogi, Smale, Weinberger 2006)
Let X be a submanifold of \mathbb{R}^{d}. Let $P \subset X$ and $\delta>0$ be such that

- P_{δ} covers X, and
- $\delta<\sqrt{3 / 20} \operatorname{reach}(X)$.

Then $H_{*}(X) \cong H_{*}\left(P_{2 \delta}\right)$.

Homology reconstruction by thickening

Theorem (Niyogi, Smale, Weinberger 2006)
Let X be a submanifold of \mathbb{R}^{d}. Let $P \subset X$ and $\delta>0$ be such that

- P_{δ} covers X, and
- $\delta<\sqrt{3 / 20} \operatorname{reach}(X)$.

Then $H_{*}(X) \cong H_{*}\left(P_{2 \delta}\right)$.

Homology reconstruction by thickening

Theorem (Niyogi, Smale, Weinberger 2006)
Let X be a submanifold of \mathbb{R}^{d}. Let $P \subset X$ and $\delta>0$ be such that

- P_{δ} covers X, and
- $\delta<\sqrt{3 / 20} \operatorname{reach}(X)$.

Then $H_{*}(X) \cong H_{*}\left(P_{2 \delta}\right)$.

Homology reconstruction by thickening

Theorem (Niyogi, Smale, Weinberger 2006)
Let X be a submanifold of \mathbb{R}^{d}. Let $P \subset X$ and $\delta>0$ be such that

- P_{δ} covers X, and
- $\delta<\sqrt{3 / 20} \operatorname{reach}(X)$.

Then $H_{*}(X) \cong H_{*}\left(P_{2 \delta}\right)$.

Homology reconstruction by thickening

Theorem (Niyogi, Smale, Weinberger 2006)
Let X be a submanifold of \mathbb{R}^{d}. Let $P \subset X$ and $\delta>0$ be such that

- P_{δ} covers X, and
- $\delta<\sqrt{3 / 20} \operatorname{reach}(X)$.

Then $H_{*}(X) \cong H_{*}\left(P_{2 \delta}\right)$.

Homology reconstruction by thickening

Theorem (Niyogi, Smale, Weinberger 2006)
Let X be a submanifold of \mathbb{R}^{d}. Let $P \subset X$ and $\delta>0$ be such that

- P_{δ} covers X, and
- $\delta<\sqrt{3 / 20} \operatorname{reach}(X)$.

Then $H_{*}(X) \cong H_{*}\left(P_{2 \delta}\right)$.

Homology inference using persistence

Theorem (Cohen-Steiner, Edelsbrunner, Harer 2005)
Let $X \subset \mathbb{R}^{d}$. Let $P \subset X$ and $\delta>0$ be such that

- P_{δ} covers X,
- the inclusions $X \rightarrow X_{\delta} \rightarrow X_{2 \delta}$ of thickenings induce isomorphisms in homology.
Then $H_{*}(X) \cong \operatorname{im} H_{*}\left(P_{\delta} \hookrightarrow P_{2 \delta}\right)$.

Homology inference using persistence

Theorem (Cohen-Steiner, Edelsbrunner, Harer 2005)
Let $X \subset \mathbb{R}^{d}$. Let $P \subset X$ and $\delta>0$ be such that

- P_{δ} covers X,
- the inclusions $X \rightarrow X_{\delta} \rightarrow X_{2 \delta}$ of thickenings induce isomorphisms in homology.
Then $H_{*}(X) \cong \operatorname{im} H_{*}\left(P_{\delta} \hookrightarrow P_{2 \delta}\right)$.

Homology inference using persistence

Theorem (Cohen-Steiner, Edelsbrunner, Harer 2005)
Let $X \subset \mathbb{R}^{d}$. Let $P \subset X$ and $\delta>0$ be such that

- P_{δ} covers X,
- the inclusions $X \rightarrow X_{\delta} \rightarrow X_{2 \delta}$ of thickenings induce isomorphisms in homology.
Then $H_{*}(X) \cong \operatorname{im} H_{*}\left(P_{\delta} \hookrightarrow P_{2 \delta}\right)$.
Proof.

Homology inference using persistence

Theorem (Cohen-Steiner, Edelsbrunner, Harer 2005)
Let $X \subset \mathbb{R}^{d}$. Let $P \subset X$ and $\delta>0$ be such that

- P_{δ} covers X,
- the inclusions $X \rightarrow X_{\delta} \rightarrow X_{2 \delta}$ of thickenings induce isomorphisms in homology.
Then $H_{*}(X) \cong \operatorname{im} H_{*}\left(P_{\delta} \hookrightarrow P_{2 \delta}\right)$.
Proof.

Homology inference using persistence

Theorem (Cohen-Steiner, Edelsbrunner, Harer 2005)
Let $X \subset \mathbb{R}^{d}$. Let $P \subset X$ and $\delta>0$ be such that

- P_{δ} covers X,
- the inclusions $X \rightarrow X_{\delta} \rightarrow X_{2 \delta}$ of thickenings induce isomorphisms in homology.
Then $H_{*}(X) \cong \operatorname{im} H_{*}\left(P_{\delta} \hookrightarrow P_{2 \delta}\right)$.
Proof.

Homology inference using persistence

Theorem (Cohen-Steiner, Edelsbrunner, Harer 2005)
Let $X \subset \mathbb{R}^{d}$. Let $P \subset X$ and $\delta>0$ be such that

- P_{δ} covers X,
- the inclusions $X \rightarrow X_{\delta} \rightarrow X_{2 \delta}$ of thickenings induce isomorphisms in homology.
Then $H_{*}(X) \cong \operatorname{im} H_{*}\left(P_{\delta} \hookrightarrow P_{2 \delta}\right)$.
Proof.

Homology inference using persistence

Theorem (Cohen-Steiner, Edelsbrunner, Harer 2005)
Let $X \subset \mathbb{R}^{d}$. Let $P \subset X$ and $\delta>0$ be such that

- P_{δ} covers X,
- the inclusions $X \rightarrow X_{\delta} \rightarrow X_{2 \delta}$ of thickenings induce isomorphisms in homology.
Then $H_{*}(X) \cong \operatorname{im} H_{*}\left(P_{\delta} \hookrightarrow P_{2 \delta}\right)$.
Proof.

Homology inference using persistence

Theorem (Cohen-Steiner, Edelsbrunner, Harer 2005)
Let $X \subset \mathbb{R}^{d}$. Let $P \subset X$ and $\delta>0$ be such that

- P_{δ} covers X,
- the inclusions $X \rightarrow X_{\delta} \rightarrow X_{2 \delta}$ of thickenings induce isomorphisms in homology.
Then $H_{*}(X) \cong \operatorname{im} H_{*}\left(P_{\delta} \hookrightarrow P_{2 \delta}\right)$.
Proof.

Homology inference using persistence

Theorem (Cohen-Steiner, Edelsbrunner, Harer 2005)
Let $X \subset \mathbb{R}^{d}$. Let $P \subset X$ and $\delta>0$ be such that

- P_{δ} covers X,
- the inclusions $X \rightarrow X_{\delta} \rightarrow X_{2 \delta}$ of thickenings induce isomorphisms in homology.
Then $H_{*}(X) \cong \operatorname{im} H_{*}\left(P_{\delta} \hookrightarrow P_{2 \delta}\right)$.
Proof.

What is persistent homology?

What is persistent homology?

What is persistent homology?

Persistent homology is the homology of a filtration.

What is persistent homology?

Persistent homology is the homology of a filtration.

- A filtration is a certain diagram $K: \mathbf{R} \rightarrow$ Top of topological spaces, indexed over the poset of real numbers $\mathbf{R}:=(\mathbb{R}, \leq)$

- a topological space K_{t} for each $t \in \mathbb{R}$
- an inclusion $\operatorname{map} K_{s} \hookrightarrow K_{t}$ for each $s \leq t \in \mathbb{R}$

What is persistent homology?

Persistent homology is the homology of a filtration.

- A filtration is a certain diagram $K: \mathbf{R} \rightarrow$ Top of topological spaces, indexed over the poset of real numbers $\mathbf{R}:=(\mathbb{R}, \leq)$

- a topological space K_{t} for each $t \in \mathbb{R}$
- an inclusion map $K_{s} \rightarrow K_{t}$ for each $s \leq t \in \mathbb{R}$
- Apply homology H_{*} : Top \rightarrow Vect

What is persistent homology?

Persistent homology is the homology of a filtration.

- A filtration is a certain diagram $K: \mathbf{R} \rightarrow$ Top of topological spaces, indexed over the poset of real numbers $\mathbf{R}:=(\mathbb{R}, \leq)$

- a topological space K_{t} for each $t \in \mathbb{R}$
- an inclusion map $K_{s} \rightarrow K_{t}$ for each $s \leq t \in \mathbb{R}$
- Apply homology H_{*} : Top \rightarrow Vect
- Persistent homology is a diagram $M=H_{\star} \circ K: \mathbf{R} \rightarrow$ Vect (persistence module):

$$
\cdots \cdots \cdots M_{s} \longrightarrow M_{t} \cdots \cdots \cdots \cdots
$$

Barcodes: the structure of persistence modules

Theorem (Crawley-Boevey 2015)

Any persistence module $M: \mathbf{R} \rightarrow$ vect (of finite dim. vector spaces over some field \mathbb{F}) decomposes as a direct sum of interval modules

$$
\rightarrow \cdots \rightarrow 0 \rightarrow \mathbb{F} \rightarrow \cdots \rightarrow \mathbb{F} \rightarrow 0 \rightarrow \cdots \rightarrow
$$

(in an essentially unique way).

Barcodes: the structure of persistence modules

Theorem (Crawley-Boevey 2015)

Any persistence module $M: \mathbf{R} \rightarrow$ vect (of finite dim. vector spaces over some field \mathbb{F}) decomposes as a direct sum of interval modules

$$
\rightarrow \cdots \rightarrow 0 \rightarrow \mathbb{F} \rightarrow \cdots \rightarrow \mathbb{F} \rightarrow 0 \rightarrow \cdots \rightarrow
$$

(in an essentially unique way).

- The supporting intervals form the persistence barcode.

Computation

Homology by matrix reduction

Notation:

- D : boundary matrix (with \mathbb{Z}_{2} coefficients)
- R_{i} : ith column of matrix R
- pivot R_{i} : maximal row index with nonzero entry in column R_{i}

Matrix reduction algorithm (variant of Gaussian elimination):

- $R=D, V=I$
- while $\exists i<j$ with pivot $R_{i}=\operatorname{pivot} R_{j}$
- add R_{i} to R_{j}, add V_{i} to V_{j}

Homology by matrix reduction

Notation:

- D : boundary matrix (with \mathbb{Z}_{2} coefficients)
- R_{i} : ith column of matrix R
- pivot R_{i} : maximal row index with nonzero entry in column R_{i}

Matrix reduction algorithm (variant of Gaussian elimination):

- $R=D, V=I$
- while $\exists i<j$ with pivot $R_{i}=\operatorname{pivot} R_{j}$
- add R_{i} to R_{j}, add V_{i} to V_{j}

Result:

- $R=D \cdot V$ is reduced (each column has a unique pivot)
- V is full rank upper triangular

Persistent homology by matrix reduction

3

4

5

	1	2	3	4	5	6	7
1			1		1		
2			1			1	
3							1
4					1	1	
5							1
6							1
7							

	1	2	3	4	5	6	7
1	1						
2		1					
3			1				
4				1			
5					1		
6						1	
7							1

Algorithm:

- while $\exists i<j$ with pivot $R_{i}=\operatorname{pivot} R_{j}$
- add R_{i} to R_{j}, add V_{i} to V_{j}

Persistent homology by matrix reduction

3

4

5

	1	2	3	4	5	6	7
1			1		1		
2			1			1	
3							1
4					1	1	
5							1
6							1
7							

	1	2	3	4	5	6	7
1	1						
2		1					
3			1				
4				1			
5					1		
6						1	
7							1

Algorithm:

- while $\exists i<j$ with pivot $R_{i}=\operatorname{pivot} R_{j}$
- add R_{i} to R_{j}, add V_{i} to V_{j}

Persistent homology by matrix reduction

3

5

	1	2	3	4	5	6	7
1			1		1		
2			1			1	
3							1
4					1	1	
5							1
6							1
7							

	1	2	3	4	5	6	7
1	1						
2		1					
3			1				
4				1			
5					1		
6						1	
7							1

Algorithm:

- while $\exists i<j$ with pivot $R_{i}=\operatorname{pivot} R_{j}$
- add R_{i} to R_{j}, add V_{i} to V_{j}

Persistent homology by matrix reduction

3

4

5

6

	1	2	3	4	5	6	7
1			1		1	1	
2			1			1	
3							1
4					1	0	
5							1
6							1
7							

	1	2	3	4	5	6	7
1	1						
2		1					
3			1				
4				1			
5					1	1	
6						1	
7							1

Algorithm:

- while $\exists i<j$ with pivot $R_{i}=\operatorname{pivot} R_{j}$
- add R_{i} to R_{j}, add V_{i} to V_{j}

Persistent homology by matrix reduction

3

4

5

6

	1	2	3	4	5	6	7
1			1		1	1	
2			1			1	
3							1
4					1		
5							1
6							1
7							

	1	2	3	4	5	6	7
1	1						
2		1					
3			1				
4				1			
5					1	1	
6						1	
7							1

Algorithm:

- while $\exists i<j$ with pivot $R_{i}=\operatorname{pivot} R_{j}$
- add R_{i} to R_{j}, add V_{i} to V_{j}

Persistent homology by matrix reduction

3

4

5

	1	2	3	4	5	6	7
1			1		1	0	
2			1			0	
3							1
4					1		
5							1
6							1
7							

	1	2	3	4	5	6	7
1	1						
2		1					
3			1			1	
4				1			
5					1	1	
6						1	
7							1

Algorithm:

- while $\exists i<j$ with pivot $R_{i}=\operatorname{pivot} R_{j}$
- add R_{i} to R_{j}, add V_{i} to V_{j}

Persistent homology by matrix reduction

3

	1	2	3	4	5	6	7
1			1		1		
2			1				
3							1
4					1		
5							1
6							1
7							

	1	2	3	4	5	6	7
1	1						
2		1					
3			1			1	
4				1			
5					1	1	
6						1	
7							1

Algorithm:

- while $\exists i<j$ with pivot $R_{i}=\operatorname{pivot} R_{j}$
- add R_{i} to R_{j}, add V_{i} to V_{j}

Persistent homology by matrix reduction

3

	1	2	3	4	5	6	7
1			1		1		
2			1				
3							1
4					1		
5							1
6							1
7							

	1	2	3	4	5	6	7
1	1						
2		1					
3			1			1	
4				1			
5					1	1	
6						1	
7							1

Algorithm:

- while $\exists i<j$ with pivot $R_{i}=\operatorname{pivot} R_{j}$
- add R_{i} to R_{j}, add V_{i} to V_{j}

Persistent homology by matrix reduction

3

	1	2	3	4	5	6	7
1			1		1		
2			1				
3							1
4					1		
5							1
6							1
7							

	1	2	3	4	5	6	7
1	1						
2		1					
3			1			1	
4				1			
5					1	1	
6						1	
7							1

Algorithm:

- while $\exists i<j$ with pivot $R_{i}=\operatorname{pivot} R_{j}$
- add R_{i} to R_{j}, add V_{i} to V_{j}

Persistent homology by matrix reduction

3

5

	1	2	3	4	5	6	7
1			1		1		
2			1				
3							1
4					1		
5							1
6							1
7							

	1	2	3	4	5	6	7
1	1						
2		1					
3			1			1	
4				1			
5					1	1	
6						1	
7							1

Algorithm:

- while $\exists i<j$ with pivot $R_{i}=\operatorname{pivot} R_{j}$
- add R_{i} to R_{j}, add V_{i} to V_{j}

Persistent homology by matrix reduction

	1	2	3	4	5	6	7
1			1		1		
2			1				
3							1
4					1		
5							1
6							1
7							

	1	2	3	4	5	6	7
1	1						
2		1					
3			1			1	
4				1			
5					1	1	
6						1	
7							1

Algorithm:

- while $\exists i<j$ with pivot $R_{i}=\operatorname{pivot} R_{j}$
- add R_{i} to R_{j}, add V_{i} to V_{j}

Stability

Stability of persistence barcodes for functions

Theorem (Cohen-Steiner, Edelsbrunner, Harer 2005)
Let $f, g: X \rightarrow \mathbb{R}$ with $\|f-g\|_{\infty}=\delta$ (and some regularity assumptions).

- Consider the sublevel set filtrations $f^{-1}(\infty, t]$ and $g^{-1}(\infty, t]$, and
- take the resulting persistence barcodes.

Then there exists a δ-matching between the barcodes, meaning that:

Stability of persistence barcodes for functions

Theorem (Cohen-Steiner, Edelsbrunner, Harer 2005)
Let $f, g: X \rightarrow \mathbb{R}$ with $\|f-g\|_{\infty}=\delta$ (and some regularity assumptions).

- Consider the sublevel set filtrations $f^{-1}(\infty, t]$ and $g^{-1}(\infty, t]$, and
- take the resulting persistence barcodes.

Then there exists a δ-matching between the barcodes, meaning that:

- matched intervals have endpoints within distance $\leq \delta$, and

Stability of persistence barcodes for functions

Theorem (Cohen-Steiner, Edelsbrunner, Harer 2005)
Let $f, g: X \rightarrow \mathbb{R}$ with $\|f-g\|_{\infty}=\delta$ (and some regularity assumptions).

- Consider the sublevel set filtrations $f^{-1}(\infty, t]$ and $g^{-1}(\infty, t]$, and
- take the resulting persistence barcodes.

Then there exists a δ-matching between the barcodes, meaning that:

- matched intervals have endpoints within distance $\leq \delta$, and
- unmatched intervals have length $\leq 2 \delta$.

Persistence and stability: the big picture

Data
point cloud
$P \subset \mathbb{R}^{d}$

Persistence and stability: the big picture

Persistence and stability: the big picture

Persistence and stability: the big picture

Data	point cloud	$P \subset \mathbb{R}^{d}$
	$\downarrow \text { distance }$	
Geometry	function	$f: \mathbb{R}^{d} \rightarrow \mathbb{R}$
\downarrow	\downarrow sublevel sets	
Topology	topological spaces (filtration)	$K: \mathbf{R} \rightarrow$ Top
\downarrow	homology	
Algebra	vector spaces (persistence module)	$M: \mathbf{R} \rightarrow \mathbf{V e c t}$

Persistence and stability: the big picture

Data	point cloud	$P \subset \mathbb{R}^{d}$
\downarrow	distance	
Geometry	function	$f: \mathbb{R}^{d} \rightarrow \mathbb{R}$
\downarrow	\downarrow sublevel sets	
Topology	topological spaces (filtration)	$K: \mathbf{R} \rightarrow$ Top
\downarrow	\downarrow homology	
Algebra	vector spaces (persistence module)	$M: \mathbf{R} \rightarrow$ Vect
I	\downarrow structure theorem	
Combinatorics	intervals (persistence barcode)	$B: \mathbf{R} \rightarrow \mathbf{M c h}$

Persistence and stability: the big picture

Persistence and stability: the big picture

Interleavings

Let $\delta=\|f-g\|_{\infty}$. Write $F_{t}=f^{-1}(-\infty, t]$ for the t-sublevel set of f.

Interleavings

Let $\delta=\|f-g\|_{\infty}$. Write $F_{t}=f^{-1}(-\infty, t]$ for the t-sublevel set of f.
Then the sublevel set filtrations $F, G: \mathbf{R} \rightarrow \mathbf{T o p}$ are δ-interleaved:

Interleavings

Let $\delta=\|f-g\|_{\infty}$. Write $F_{t}=f^{-1}(-\infty, t]$ for the t-sublevel set of f.
Then the sublevel set filtrations $F, G: \mathbf{R} \rightarrow$ Top are δ-interleaved:

Applying homology, the persistence modules
$H_{*}(F), H_{*}(G): \mathbf{R} \rightarrow$ Vect are δ-interleaved:

Algebraic stability of persistence barcodes

Theorem (Chazal et al. 2009, 2012; B, Lesnick 2015)
If two persistence modules are δ-interleaved, then there exists a δ-matching of their barcodes.

Structure of persistence sub-/quotient modules

Proposition (B, Lesnick 2015)

Let $M \rightarrow N$ be an epimorphism of persistence modules.
Then there is an injection of barcodes $B(N) \hookrightarrow B(M)$ such that
if J is mapped to I, then

- I and are aligned below, and
- I bounds above.

This construction is functorial.

Structure of persistence sub-/quotient modules

Proposition (B, Lesnick 2015)

Let $M \rightarrow N$ be an epimorphism of persistence modules.
Then there is an injection of barcodes $B(N) \hookrightarrow B(M)$ such that
if J is mapped to I, then

- I and are aligned below, and
- I bounds above.

This construction is functorial.
Dually, there is an injection $B(M) \hookrightarrow B(N)$ for monomorphisms $M \rightarrow N$.

Induced matchings

For $f: M \rightarrow N$ a general morphism of pfd persistence modules, the epi-mono factorization

$$
M \rightarrow \operatorname{im} f \hookrightarrow N
$$

gives an induced matching between their barcodes:

Induced matchings

For $f: M \rightarrow N$ a general morphism of pfd persistence modules, the epi-mono factorization

$$
M \rightarrow \operatorname{im} f \hookrightarrow N
$$

gives an induced matching between their barcodes:

- compose the injections $B(M) \hookleftarrow B(\operatorname{im} f) \hookrightarrow B(N)$ from before to a matching $B(M) \rightarrow B(N)$

Induced matchings

For $f: M \rightarrow N$ a general morphism of pfd persistence modules, the epi-mono factorization

$$
M \rightarrow \operatorname{im} f \hookrightarrow N
$$

gives an induced matching between their barcodes:

- compose the injections $B(M) \hookleftarrow B(\operatorname{im} f) \hookrightarrow B(N)$ from before to a matching $B(M) \rightarrow B(N)$

If f is a δ-interleaving morphism, then this is a δ-matching.

Simplification

Topological simplification of functions

Consider the following problem:

Problem (Topological simplification)

Given a function f and a real number $\delta \geq 0$, find a function f_{δ} with the minimal number of critical points subject to $\left\|f_{\delta}-f\right\|_{\infty} \leq \delta$.

Persistence and Morse theory

Morse theory (smooth or discrete):

- Relates critical points to homology of sublevel sets
- Provides a method for canceling pairs of critical points

(from Milnor: Lectures on the h-cobordism theorem, 1965)

Persistence and Morse theory

Morse theory (smooth or discrete):

- Relates critical points to homology of sublevel sets
- Provides a method for canceling pairs of critical points

(from Milnor: Lectures on the h-cobordism theorem, 1965)
Persistent homology:
- Relates homology of different sublevel set
- Identifies pairs of critical points (birth and death of homology) and quantifies their persistence

Combining persistence and Morse theory

For a Morse function:

- critical points correspond to endpoints of barcode intervals

Combining persistence and Morse theory

For a Morse function:

- critical points correspond to endpoints of barcode intervals By stability of persistence barcodes:

Proposition

The critical points of f with persistence $>2 \delta$ provide a lower bound on the number of critical points of any function g with $\|g-f\|_{\infty} \leq \delta$.

Combining persistence and Morse theory

For a Morse function:

- critical points correspond to endpoints of barcode intervals By stability of persistence barcodes:

Proposition

The critical points of f with persistence $>2 \delta$ provide a lower bound on the number of critical points of any function g with $\|g-f\|_{\infty} \leq \delta$.

Theorem (B, Lange, Wardetzky, 2011)

Let f be a function on a surface and let $\delta>0$.
Canceling all pairs with persistence $\leq 2 \delta$ yields a function f_{δ}

- satisfying $\left\|f_{\delta}-f\right\|_{\infty} \leq \delta$ and
- achieving the lower bound on the number of critical points.

Combining persistence and Morse theory

For a Morse function:

- critical points correspond to endpoints of barcode intervals By stability of persistence barcodes:

Proposition

The critical points of f with persistence $>2 \delta$ provide a lower bound on the number of critical points of any function g with $\|g-f\|_{\infty} \leq \delta$.

Theorem (B, Lange, Wardetzky, 2011)

Let f be a function on a surface and let $\delta>0$.
Canceling all pairs with persistence $\leq 2 \delta$ yields a function f_{δ}

- satisfying $\left\|f_{\delta}-f\right\|_{\infty} \leq \delta$ and
- achieving the lower bound on the number of critical points.

Does not generalize to higher-dimensional manifolds!

Functional topology

When was persistent homology discovered？

R H．Edelsbrunner，D．Letscher，and A．Zomorodian
Topological persistence and simplification
Foundations of Computer Science， 2000
國 V．Robbins
Computational Topology at Multiple Resolutions．
PhD thesis，University of Colorado Boulder， 2000
显
P．Frosini
A distance for similarity classes of submanifolds of a Euclidean space
Bulletin of the Australian Mathematical Society， 1990.
俥 S．A．Barannikov．
The framed Morse complex and its invariants．
In Singularities and bifurcations，Adv．Soviet Math．（vol．21）， 1994.

When was persistent homology discovered first?

When was persistent homology discovered first?

RANK AND SPAN IN FUNCTIONAL TOPOLOGY

By Marston Morse

(Received August 9, 1939)

1. Introduction.

The analysis of functions F on metric spaces M of the type which appear in variational theories is made difficult by the fact that the critical limits, such as absolute minima, relative minima, minimax values etc., are in general infinite in number. These limits are associated with relative k-cycles of various dimensions and are classified as 0 -limits, 1 -limits etc. The number of k-limits suitably counted is called the $k^{\text {th }}$ type number m_{k} of F. The theory seeks to establish relations between the numbers m_{k} and the connectivities p_{k} of M. The numbers p_{k} are finite in the most important applications. It is otherwise with the numbers m_{k}.

The theory has been able to proceed provided one of the following hypotheses is caticfiod The oritical limitc oluctor at most at 1∞. the oritical ninte ar $3^{33 / 58}$

When was persistent homology discovered first?

Web Images

More.
Sign in

Motivation and application: minimal surfaces

Problem (Plateau's problem)

Find an immersed disk of least area spanned by a given closed Jordan curve.

(from Dierkes et al.: Minimal Surfaces, 2010)

Motivation and application: minimal surfaces

Problem (Plateau's problem)

Find an immersed disk of least area spanned by a given closed Jordan curve.

(from Dierkes et al.: Minimal Surfaces, 2010)
Solution by Douglas (1930):

- identifies minimal surfaces with critical points of the Douglas

Existence of unstable minimal surfaces

Theorem (Morse, Tompkins 1939; Shiffman 1939)

Assume that a given curve bounds two separate stable minimal surfaces.

Existence of unstable minimal surfaces

Theorem (Morse, Tompkins 1939; Shiffman 1939)

Assume that a given curve bounds two separate stable minimal surfaces. Then there also exists an unstable minimal surface bounding that curve (a critical point that is not a local minimum).

Q-tame persistence modules

Definition (Chazal et al. 2009)

A persistence module $M: \mathbf{R} \rightarrow$ vect is q-tame if for every $s<t$ the structure $\operatorname{map} M_{s} \rightarrow M_{t}$ has finite rank.

Q-tame persistence modules

Definition (Chazal et al. 2009)
A persistence module $M: \mathbf{R} \rightarrow$ vect is q-tame if for every $s<t$ the structure $\operatorname{map} M_{s} \rightarrow M_{t}$ has finite rank.

- A q-tame persistence module
- does not necessarily admit a barcode,
- but has a submodule at distance 0 that admits a barcode.

Q-tame persistence modules

Definition (Chazal et al. 2009)
A persistence module $M: \mathbf{R} \rightarrow$ vect is q-tame if for every $s<t$ the structure $\operatorname{map} M_{s} \rightarrow M_{t}$ has finite rank.

- A q-tame persistence module
- does not necessarily admit a barcode,
- but has a submodule at distance 0 that admits a barcode.
- Morse's goal, in modern language:
- Sufficient conditions for sublevel sets to have q-tame persistence,
- which are satisfied by the minimal surface functional

Q-tameness from local connectivity

Theorem (Morse, 1937)

If a function $f: X \rightarrow \mathbb{R}$ on a metric space X is bounded below and the sublevel set filtration is compact and weakly locally connected, then it has q-tame persistent Vietoris homology.

Q-tameness from local connectivity

Theorem (Morse, 1937; incorrect)

If a function $f: X \rightarrow \mathbb{R}$ on a metric space X is bounded below and the sublevel set filtration is compact and weakly locally connected, then it has q-tame persistent Vietoris homology.

Homologically locally small filtrations

Definition

The sublevel set filtration of a function $f: X \rightarrow \mathbb{R}$ is homologically locally connected (HLC) if

- for any point $x \in X$, any values $f(x)<s<t$, and
- any neighborhood V of x in the sublevel set $f^{-1}(-\infty, t]$, there is
- a neighborhood $U \subseteq V$ of x in the sublevel set $f^{-1}(-\infty, s]$
such that the inclusion $U \hookrightarrow V$ induces a zero map on homology.

A sufficient condition for q-tame persistence

Theorem (B, Medina-Mardones, Schmahl 2021)
If the sublevel sets of a function $f: X \rightarrow \mathbb{R}$ are compact and $H L C$, then their persistent homology is q-tame.

- f is not required to be continuous

A sufficient condition for q-tame persistence

Theorem (B, Medina-Mardones, Schmahl 2021)
If the sublevel sets of a function $f: X \rightarrow \mathbb{R}$ are compact and $H L C$, then their persistent homology is q-tame.

- f is not required to be continuous
- Conditions are satisfied by the Douglas functional

A sufficient condition for q-tame persistence

Theorem (B, Medina-Mardones, Schmahl 2021)
If the sublevel sets of a function $f: X \rightarrow \mathbb{R}$ are compact and $H L C$, then their persistent homology is q-tame.

- f is not required to be continuous
- Conditions are satisfied by the Douglas functional
- Fixes the gap in Morse/Tompkins' proof

Persistence of Vietoris-Rips complexes

Vietoris-Rips complexes

Vietoris-Rips complexes

Vietoris-Rips complexes

Vietoris-Rips complexes

Vietoris-Rips complexes

Vietoris-Rips complexes

Vietoris-Rips complexes

Vietoris-Rips complexes

Vietoris-Rips complexes

Vietoris-Rips complexes

For a metric space X, the Vietoris-Rips complex at scale $t>0$ is the simplicial complex

$$
\operatorname{Rips}_{t}(X)=\{S \subseteq X \mid S \neq \varnothing \text { finite, } \operatorname{diam} S \leq t\} .
$$

An example computation

Example data set:

- 192 points on \mathbb{S}^{2}
- homology up to dimension 2: over 56 mio. simplices in 3-skeleton

An example computation

Example data set:

- 192 points on \mathbb{S}^{2}
- homology up to dimension 2: over 56 mio. simplices in 3-skeleton

Some previous software:

- javaplex (Stanford): 3200 seconds, 12 GB
- Dionysus (Duke): 615 seconds, 3.4 GB
- DIPHA (IST Austria): 50 seconds, 6 GB
- GUDHI (INRIA): 60 seconds, 3 GB

An example computation

Example data set:

- 192 points on \mathbb{S}^{2}
- homology up to dimension 2: over 56 mio. simplices in 3-skeleton

Some previous software:

- javaplex (Stanford): 3200 seconds, 12 GB
- Dionysus (Duke): 615 seconds, 3.4 GB
- DIPHA (IST Austria): 50 seconds, 6 GB
- GUDHI (INRIA): 60 seconds, 3 GB

Current state of the art:

- Ripser: 0.72 seconds, 83 MB

An example computation

Example data set:

- 192 points on \mathbb{S}^{2}
- homology up to dimension 2: over 56 mio. simplices in 3-skeleton

Some previous software:

- javaplex (Stanford): 3200 seconds, 12 GB
- Dionysus (Duke): 615 seconds, 3.4 GB
- DIPHA (IST Austria): 50 seconds, 6 GB
- GUDHI (INRIA): 60 seconds, 3 GB

Current state of the art:

- Ripser: 0.72 seconds, 83 MB
- try live.ripser.org

Apparent pairs:

Ripser uses the following construction for a computational shortcut:
Definition
In a simplexwise filtration $\left(K_{i}=\left\{\sigma_{1}, \ldots, \sigma_{i}\right\}\right)_{i}$, a pair of simplices (σ, τ) is an apparent pair if

- σ is the latest proper face of τ, and
- τ is the earliest proper coface of σ.

Apparent pairs:

Ripser uses the following construction for a computational shortcut:

Definition

In a simplexwise filtration $\left(K_{i}=\left\{\sigma_{1}, \ldots, \sigma_{i}\right\}\right)_{i}$, a pair of simplices (σ, τ) is an apparent pair if

- σ is the latest proper face of τ, and
- τ is the earliest proper coface of σ.

Proposition

The apparent pairs form a discrete gradient.

Proposition

The apparent pairs form persistence pairs: the cycle $\partial \tau$ gives rise to an interval $[f(\sigma), f(\tau))$ in the persistence barcode.

The diameter-lexicographic filtration

We use the lexicographic refinement of the Vietoris-Rips filtration:

- Choose a total order on the vertices
- Order simplices by diameter
- Order simplices with same diameter by lexicographic vertex order

Topology of viral evolution

Joint work with: A. Ott, M. Bleher, L. Hahn (Heidelberg), R. Rabadan, J. Patiño-Galindo
(Columbia), M. Carrière (INRIA)

Topology of viral evolution

Joint work with: A. Ott, M. Bleher, L. Hahn (Heidelberg), R. Rabadan, J. Patiño-Galindo
(Columbia), M. Carrière (INRIA)

Observation: Ripser runs unusually fast on genetic distance data

- SARS-CoV2 spike protein: 25556 data points $\left(2.8 \times 10^{12}\right.$ simplices for H_{1})

Can we make it run even faster?

The Rips Contractibility Lemma

Theorem (Rips; Gromov 1988)
Let X be a δ-hyperbolic geodesic metric space. Then $\operatorname{Rips}_{t}(X)$ is contractible for all $t \geq 4 \delta$.

- What about non-geodesic spaces?
- In particular, finite metric spaces?
- Connection to Ripser?

Gromov-hyperbolicity

Definition (Gromov 1988)

A metric space X is δ-hyperbolic if for all $w, x, y, z \in X$ we have

$$
d(w, x)+d(y, z) \leq \max \{d(w, y)+d(x, z), d(w, z)+d(x, y)\}+2 \delta .
$$

- The hyperbolic plane is \ln 2-hyperbolic

- 0-hyperbolic spaces are subspaces of trees

Rips contractibility for non-geodesic spaces

Theorem (B, Roll 2021)

Let X be a finite δ-hyperbolic space. Then there is a discrete gradient encoding the collapses

$$
\operatorname{Rips}_{u}(X) \searrow \operatorname{Rips}_{t}(X) \searrow\{*\}
$$

for all $u>t \geq 4 \delta+2 v$, where v is the geodesic defect of X.

Geodesic defect

Geodesic defect

Geodesic defect

Definition (Bonk, Schramm 2000)
A metric space X is v-geodesic if for all points $x, y \in X$ and all $r, s \geq 0$ with $r+s=d(x, y)$ we have

$$
B_{r+v}(x) \cap B_{r+v}(y) \neq \varnothing .
$$

We call the infimum of all such v the geodesic defect of X.

Bounds on the geodesic defect

v : geodesic defect of finite (X, d)

- lower bound:

$$
v \geq \frac{1}{2} \min _{x \neq y \in X} d(x, y)
$$

- upper bound:

$$
v \leq d_{H}(X, Z)
$$

for $X \subseteq Z$ an ambient geodesic space

Bounds on the geodesic defect

v : geodesic defect of finite (X, d)

- lower bound:

$$
v \geq \frac{1}{2} \min _{x \neq y \in X} d(x, y)
$$

- upper bound:

$$
v \leq d_{H}(X, Z)
$$

for $X \subseteq Z$ an ambient geodesic space

Possible ambient spaces for X :

- $\ell^{\infty}(X)$ (functions $X \rightarrow \mathbb{R}$)
- Kuratowski embedding $e: X \rightarrow \ell^{\infty}(X), x \mapsto\left(d_{x}=d(x,-): X \rightarrow \mathbb{R}\right.$
- injective hull (tight span): subspace of $\ell^{\infty}(X)$

The tight span of a metric space

Given a metric space (X, d), the injective hull is

$$
E(X)=\left\{f: X \rightarrow \mathbb{R} \mid f(x)+f(y) \geq d(x, y), f(x)=\sup _{y \in X}(d(x, y)-f(y))\right\},
$$

equipped with the metric induced by the sup-norm.

The tight span of a metric space

Given a metric space (X, d), the injective hull is
$E(X)=\left\{f: X \rightarrow \mathbb{R} \mid f(x)+f(y) \geq d(x, y), f(x)=\sup _{y \in X}(d(x, y)-f(y))\right\}$,
equipped with the metric induced by the sup-norm.
Properties:

- geodesic
- hyperconvex (metric balls have the Helly property)
- injective (in the category of metric spaces)
[Aronszain-Panichpakdi 1956]
- contains the Kuratowski embedding $e(X): x \mapsto d_{x}$
- minimal space with above properties
- contractible [Isbell 1962]

Density of Kuratowski embedding

Theorem (Lang $2013+\epsilon$)

Let X be a δ-hyperbolic v-geodesic metric space. Then the injective hull $E(X)$ is δ-hyperbolic, and every point in $E(X)$ has distance at most $2 \delta+v$ to $e(X)$.

Corollary (Lim, Mémoli, Okutan $2020+\epsilon$)
$\operatorname{Rips}_{t}(X)$ is contractible for all $t>4 \delta+2 v$.
Proof outline.

- $\operatorname{Rips}_{t}(X)=\operatorname{Cech}_{r}(e(X), E(X))$ (hyperconvexity)
- For $r>2 \delta+v:\left(B_{r}(x)\right)_{x \in e(X)}$ is a good cover of $E(X) \quad$ (density)
- $\operatorname{Cech}_{r}(e(X), E(X)) \simeq E(X) \quad$ (nerve theorem)
- $E(X) \simeq\{*\}$ (contractibility)

Collapsing Vietoris-Rips complexes of generic trees

Consider a generic finite metric tree $T=(V, E)$ (distinct distances).

- diam: $2^{V} \rightarrow \mathbb{R}$ is a generalized discrete Morse function.
- The discrete gradient has the non-critical intervals $\left[e, \Delta_{e}\right]$, where
- $e \in\binom{V}{2} \backslash E$ is any non-tree edge
- Δ_{e} is the unique maximal cofaces with $\operatorname{diam} \Delta_{e}=l(e)$
- Only vertices V and edges E are critical

Corollary (B, Roll 2021)

The discrete gradient induces collapses

$$
\begin{array}{lr}
\operatorname{Rips}_{t}(X) \searrow T_{t} & \text { for all } t \in \mathbb{R}, \text { with } \\
\operatorname{Rips}_{t}(X) \searrow T \searrow\{*\} & \text { for all } t \geq \max l(E), \text { and } \\
\operatorname{Rips}_{u}(X) \searrow \operatorname{Rips}_{t}(X) & \text { for all }(t, u] \cap l(E)=\varnothing .
\end{array}
$$

In particular, the persistent homology is trivial in degrees >0.

Arbitrary tree metrics

Example: phylogenetic trees

- non-generic tree metric
- diam is not a generalized discrete Morse function

Arbitrary tree metrics

Example: phylogenetic trees

- non-generic tree metric
- diam is not a generalized discrete Morse function

There is still a compatible gradient:

- independent of choices (canonical gradient)
- for generic trees: equals the diam gradient
- only V, E critical
- induces the same collapses

Symbolic perturbation

Tie breaking for non-distinct pairwise distances:

- Choose total order on vertices
- Order edges lexicographically
- Perturb metric symbolically w.r.t. edge order

Symbolic perturbation

Tie breaking for non-distinct pairwise distances:

- Choose total order on vertices
- Order edges lexicographically
- Perturb metric symbolically w.r.t. edge order

This results in a gradient structure like a generic tree metric

Symbolic perturbation

Tie breaking for non-distinct pairwise distances:

- Choose total order on vertices
- Order edges lexicographically
- Perturb metric symbolically w.r.t. edge order

This results in a gradient structure like a generic tree metric

Symbolic perturbation

Tie breaking for non-distinct pairwise distances:

- Choose total order on vertices
- Order edges lexicographically
- Perturb metric symbolically w.r.t. edge order

This results in a gradient structure like a generic tree metric

Symbolic perturbation

Tie breaking for non-distinct pairwise distances:

- Choose total order on vertices
- Order edges lexicographically
- Perturb metric symbolically w.r.t. edge order

This results in a gradient structure like a generic tree metric

Symbolic perturbation

Tie breaking for non-distinct pairwise distances:

- Choose total order on vertices
- Order edges lexicographically
- Perturb metric symbolically w.r.t. edge order

This results in a gradient structure like a generic tree metric

Symbolic perturbation

Tie breaking for non-distinct pairwise distances:

- Choose total order on vertices
- Order edges lexicographically
- Perturb metric symbolically w.r.t. edge order

This results in a gradient structure like a generic tree metric

- The canonical gradient (from the previous slide) refines the perturbed gradient (for any choice of total order)
- Hence, the perturbed gradient induces the same collapses

Collapsing Rips complexes of trees with apparent pairs

Let X be the path length metric spaces for a weighted tree $T=(X, E)$.

- Choose a root and extend the tree order to a total order.

Collapsing Rips complexes of trees with apparent pairs

Let X be the path length metric spaces for a weighted tree $T=(X, E)$.

- Choose a root and extend the tree order to a total order.

Theorem (B, Roll 2021)

The apparent pairs gradient has critical simplices only on the tree T. It induces the collapses

$$
\operatorname{Rips}_{u}(X) \searrow \operatorname{Rips}_{t}(X) \searrow T_{t}
$$

for all $u>t$ such that no tree edge $e \in E$ has length $l(e) \in(t, u]$.

Collapsing Rips complexes of trees with apparent pairs

Let X be the path length metric spaces for a weighted tree $T=(X, E)$.

- Choose a root and extend the tree order to a total order.

Theorem (B, Roll 2021)

The apparent pairs gradient has critical simplices only on the tree T. It induces the collapses

$$
\operatorname{Rips}_{u}(X) \searrow \operatorname{Rips}_{t}(X) \searrow T_{t}
$$

for all $u>t$ such that no tree edge $e \in E$ has length $l(e) \in(t, u]$.

Collapsing Rips complexes of trees with apparent pairs

Let X be the path length metric spaces for a weighted tree $T=(X, E)$.

- Choose a root and extend the tree order to a total order.

Theorem (B, Roll 2021)

The apparent pairs gradient has critical simplices only on the tree T. It induces the collapses

$$
\operatorname{Rips}_{u}(X) \searrow \operatorname{Rips}_{t}(X) \searrow T_{t}
$$

for all $u>t$ such that no tree edge $e \in E$ has length $l(e) \in(t, u]$.

Collapsing Rips complexes of trees with apparent pairs

Let X be the path length metric spaces for a weighted tree $T=(X, E)$.

- Choose a root and extend the tree order to a total order.

Theorem (B, Roll 2021)

The apparent pairs gradient has critical simplices only on the tree T. It induces the collapses

$$
\operatorname{Rips}_{u}(X) \searrow \operatorname{Rips}_{t}(X) \searrow T_{t}
$$

for all $u>t$ such that no tree edge $e \in E$ has length $l(e) \in(t, u]$.

Collapsing Rips complexes of trees with apparent pairs

Let X be the path length metric spaces for a weighted tree $T=(X, E)$.

- Choose a root and extend the tree order to a total order.

Theorem (B, Roll 2021)

The apparent pairs gradient has critical simplices only on the tree T. It induces the collapses

$$
\operatorname{Rips}_{u}(X) \searrow \operatorname{Rips}_{t}(X) \searrow T_{t}
$$

for all $u>t$ such that no tree edge $e \in E$ has length $l(e) \in(t, u]$.

Collapsing Rips complexes of trees with apparent pairs

Let X be the path length metric spaces for a weighted tree $T=(X, E)$.

- Choose a root and extend the tree order to a total order.

Theorem (B, Roll 2021)

The apparent pairs gradient has critical simplices only on the tree T. It induces the collapses

$$
\operatorname{Rips}_{u}(X) \searrow \operatorname{Rips}_{t}(X) \searrow T_{t}
$$

for all $u>t$ such that no tree edge $e \in E$ has length $l(e) \in(t, u]$.

Collapsing Rips complexes of trees with apparent pairs

Let X be the path length metric spaces for a weighted tree $T=(X, E)$.

- Choose a root and extend the tree order to a total order.

Theorem (B, Roll 2021)

The apparent pairs gradient has critical simplices only on the tree T. It induces the collapses

$$
\operatorname{Rips}_{u}(X) \searrow \operatorname{Rips}_{t}(X) \searrow T_{t}
$$

for all $u>t$ such that no tree edge $e \in E$ has length $l(e) \in(t, u]$.

- Explains why Ripser is very fast on genetic distances (tree-like)

图 U．Bauer，M．Kerber，F．Roll，and A．Rolle
A Unified View on the Functorial Nerve Theorem and its Variations
Preprint，arXiv：2203．03571， 2022

国
R．Forman
Morse theory for cell complexes
Advances in Mathematics， 1998
目 U．Bauer，H．Edelsbrunner
The Morse Theory of Čech and Delaunay Complexes
Transactions of the AMS， 2017.
囯 U．Bauer，M．Lesnick
Induced matchings and the algebraic stability of persistence barcodes
Journal of Computational Geometry， 2015.
R
U．Bauer，F．Roll
Gromov hyperbolicity，geodesic defect，and apparent pairs in Vietoris－Rips filtrations
Preprint，arXiv：2112．06781， 2022

图 U. Bauer, A. M. Medina-Mardones, and M. Schmahl
Persistence in functional topology and a correction to a theorem of Morse

Preprint, arXiv:2107,14247, 2021
B
D. Cohen-Steiner, H. Edelsbrunner, and J. Harer.

Stability of persistence diagrams
Discrete \& Computational Geometry, 2007
U. Bauer

Ripser: efficient computation of Vietoris-Rips persistence barcodes
Jounal of Applied and Computational Topology, 2021

